Some facts from descriptive set theory concerning essential spectra
and applications
Studia Mathematica, Tome 171 (2005) no. 3, pp. 207-225
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a separable Banach space and denote by $\mathcal{L}(X)$
(resp. $\mathcal{K}(\mathbb{C})$) the set of all bounded linear
operators on $X$ (resp. the set of all compact subsets of
$\mathbb{C}$). We show that the maps from
$\mathcal{L}(X)$ into $\mathcal{K}(\mathbb{C})$ which assign to
each element of $\mathcal{L}(X)$ its spectrum, approximate point
spectrum, essential spectrum, Weyl essential spectrum,
Browder essential spectrum, respectively, are Borel maps,
where $\mathcal{L}(X)$ (resp. $\mathcal{K}(\mathbb{C})$) is
endowed with the strong operator topology (resp. Hausdorff
topology). This enables us to derive the topological complexity of
some subsets of $\mathcal{L}(X)$ and to discuss the properties of
a class of strongly continuous semigroups. We close the paper by
giving a characterization of strongly continuous semigroups on
hereditarily indecomposable Banach spaces.
Keywords:
separable banach space denote mathcal resp mathcal mathbb set bounded linear operators resp set compact subsets mathbb maps mathcal mathcal mathbb which assign each element mathcal its spectrum approximate point spectrum essential spectrum weyl essential spectrum browder essential spectrum respectively borel maps where mathcal resp mathcal mathbb endowed strong operator topology resp hausdorff topology enables derive topological complexity subsets mathcal discuss properties class strongly continuous semigroups close paper giving characterization strongly continuous semigroups hereditarily indecomposable banach spaces
Affiliations des auteurs :
Khalid Latrach 1 ; J. Martin Paoli 2 ; Pierre Simonnet 2
@article{10_4064_sm171_3_1,
author = {Khalid Latrach and J. Martin Paoli and Pierre Simonnet},
title = {Some facts from descriptive set theory concerning essential spectra
and applications},
journal = {Studia Mathematica},
pages = {207--225},
year = {2005},
volume = {171},
number = {3},
doi = {10.4064/sm171-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-3-1/}
}
TY - JOUR AU - Khalid Latrach AU - J. Martin Paoli AU - Pierre Simonnet TI - Some facts from descriptive set theory concerning essential spectra and applications JO - Studia Mathematica PY - 2005 SP - 207 EP - 225 VL - 171 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm171-3-1/ DO - 10.4064/sm171-3-1 LA - en ID - 10_4064_sm171_3_1 ER -
%0 Journal Article %A Khalid Latrach %A J. Martin Paoli %A Pierre Simonnet %T Some facts from descriptive set theory concerning essential spectra and applications %J Studia Mathematica %D 2005 %P 207-225 %V 171 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm171-3-1/ %R 10.4064/sm171-3-1 %G en %F 10_4064_sm171_3_1
Khalid Latrach; J. Martin Paoli; Pierre Simonnet. Some facts from descriptive set theory concerning essential spectra and applications. Studia Mathematica, Tome 171 (2005) no. 3, pp. 207-225. doi: 10.4064/sm171-3-1
Cité par Sources :