Extending $n$-convex functions
Studia Mathematica, Tome 171 (2005) no. 2, pp. 125-152

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We are given data $\alpha _1,\mathinner {\ldotp \ldotp \ldotp },\alpha _m$ and a set of points $E=\{ x_1,\mathinner {\ldotp \ldotp \ldotp },x_m\} $. We address the question of conditions ensuring the existence of a function $f$ satisfying the interpolation conditions $f(x_i)=\alpha _i$, $i=1,\mathinner {\ldotp \ldotp \ldotp },m$, that is also $n$-convex on a set properly containing $E$. We consider both one-point extensions of $E$, and extensions to all of ${{\mathbb R}}$. We also determine bounds on the $n$-convex functions satisfying the above interpolation conditions.
DOI : 10.4064/sm171-2-2
Keywords: given alpha mathinner ldotp ldotp ldotp alpha set points mathinner ldotp ldotp ldotp address question conditions ensuring existence function satisfying interpolation conditions alpha mathinner ldotp ldotp ldotp n convex set properly containing consider one point extensions extensions mathbb determine bounds n convex functions satisfying above interpolation conditions

Allan Pinkus 1 ; Dan Wulbert 2

1 Department of Mathematics Technion 32000 Haifa, Israel
2 Department of Mathematics University of California, San Diego (UCSD) 9500 Gilman Drive La Jolla, CA 92093-0112, U.S.A.
@article{10_4064_sm171_2_2,
     author = {Allan Pinkus and Dan Wulbert},
     title = {Extending $n$-convex functions},
     journal = {Studia Mathematica},
     pages = {125--152},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2005},
     doi = {10.4064/sm171-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-2/}
}
TY  - JOUR
AU  - Allan Pinkus
AU  - Dan Wulbert
TI  - Extending $n$-convex functions
JO  - Studia Mathematica
PY  - 2005
SP  - 125
EP  - 152
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-2/
DO  - 10.4064/sm171-2-2
LA  - en
ID  - 10_4064_sm171_2_2
ER  - 
%0 Journal Article
%A Allan Pinkus
%A Dan Wulbert
%T Extending $n$-convex functions
%J Studia Mathematica
%D 2005
%P 125-152
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-2/
%R 10.4064/sm171-2-2
%G en
%F 10_4064_sm171_2_2
Allan Pinkus; Dan Wulbert. Extending $n$-convex functions. Studia Mathematica, Tome 171 (2005) no. 2, pp. 125-152. doi: 10.4064/sm171-2-2

Cité par Sources :