Extending $n$-convex functions
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 171 (2005) no. 2, pp. 125-152
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We are given data $\alpha _1,\mathinner {\ldotp \ldotp \ldotp },\alpha _m$ and a set of points $E=\{ x_1,\mathinner {\ldotp \ldotp \ldotp },x_m\} $. We address the question of conditions ensuring the existence of a function $f$ satisfying the interpolation conditions $f(x_i)=\alpha _i$, $i=1,\mathinner {\ldotp \ldotp \ldotp },m$, that is also $n$-convex on a set properly containing $E$. We consider both one-point extensions of $E$, and extensions to all of ${{\mathbb R}}$. We also determine bounds on the $n$-convex functions satisfying the above interpolation conditions.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
given alpha mathinner ldotp ldotp ldotp alpha set points mathinner ldotp ldotp ldotp address question conditions ensuring existence function satisfying interpolation conditions alpha mathinner ldotp ldotp ldotp n convex set properly containing consider one point extensions extensions mathbb determine bounds n convex functions satisfying above interpolation conditions
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Allan Pinkus 1 ; Dan Wulbert 2
@article{10_4064_sm171_2_2,
     author = {Allan Pinkus and Dan Wulbert},
     title = {Extending $n$-convex functions},
     journal = {Studia Mathematica},
     pages = {125--152},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2005},
     doi = {10.4064/sm171-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-2/}
}
                      
                      
                    Allan Pinkus; Dan Wulbert. Extending $n$-convex functions. Studia Mathematica, Tome 171 (2005) no. 2, pp. 125-152. doi: 10.4064/sm171-2-2
Cité par Sources :
