$\varepsilon $-Kronecker and $I_{0}$ sets in abelian groups, III:
interpolation by measures on small sets
Studia Mathematica, Tome 171 (2005) no. 1, pp. 15-32
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $U$ be an open subset of a locally compact abelian group $G$ and let $E$ be a subset of its dual group ${\mit\Gamma} $. We say $E$ is $I_0(U)$ if every bounded sequence indexed by $E$ can be interpolated by the Fourier transform of a discrete measure supported on $U$. We show that if $E\cdot {\mit\Delta} $ is $I_0$ for all finite subsets ${\mit\Delta} $ of a torsion-free ${\mit\Gamma} $, then for each open $U\subset G$ there exists a finite set $F\subset E$ such that $E\setminus F$ is $I_0(U)$. When $G$ is connected, $F$ can be taken to be empty. We obtain a much stronger form of that for Hadamard sets and $\varepsilon $-Kronecker sets, and a slightly weaker general form when ${\mit\Gamma} $ has torsion. This extends previously known results for Sidon, $\varepsilon $-Kronecker, and Hadamard sets.
Keywords:
subset locally compact abelian group subset its dual group mit gamma say every bounded sequence indexed interpolated fourier transform discrete measure supported cdot mit delta finite subsets mit delta torsion free mit gamma each subset there exists finite set subset setminus connected taken empty obtain much stronger form hadamard sets varepsilon kronecker sets slightly weaker general form mit gamma has torsion extends previously known results sidon varepsilon kronecker hadamard sets
Affiliations des auteurs :
Colin C. Graham 1 ; Kathryn E. Hare 2
@article{10_4064_sm171_1_2,
author = {Colin C. Graham and Kathryn E. Hare},
title = {$\varepsilon ${-Kronecker} and $I_{0}$ sets in abelian groups, {III:
} interpolation by measures on small sets},
journal = {Studia Mathematica},
pages = {15--32},
publisher = {mathdoc},
volume = {171},
number = {1},
year = {2005},
doi = {10.4064/sm171-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-2/}
}
TY - JOUR
AU - Colin C. Graham
AU - Kathryn E. Hare
TI - $\varepsilon $-Kronecker and $I_{0}$ sets in abelian groups, III:
interpolation by measures on small sets
JO - Studia Mathematica
PY - 2005
SP - 15
EP - 32
VL - 171
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-2/
DO - 10.4064/sm171-1-2
LA - en
ID - 10_4064_sm171_1_2
ER -
%0 Journal Article
%A Colin C. Graham
%A Kathryn E. Hare
%T $\varepsilon $-Kronecker and $I_{0}$ sets in abelian groups, III:
interpolation by measures on small sets
%J Studia Mathematica
%D 2005
%P 15-32
%V 171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-2/
%R 10.4064/sm171-1-2
%G en
%F 10_4064_sm171_1_2
Colin C. Graham; Kathryn E. Hare. $\varepsilon $-Kronecker and $I_{0}$ sets in abelian groups, III:
interpolation by measures on small sets. Studia Mathematica, Tome 171 (2005) no. 1, pp. 15-32. doi: 10.4064/sm171-1-2
Cité par Sources :