Multiplying balls in the space of continuous functions on $[0,1]$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 170 (2005) no. 2, pp. 203-209
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $C$ denote the Banach space of real-valued
continuous functions on $[0,1]$. Let $\Phi\colon C\times C\to C$. If $\Phi\in
\{ +,\min ,\max\}$ then $\Phi$ is an open mapping but the multiplication $\Phi =\cdot$
is not open.
For an open ball
$B(f,r)$ in $C$ let $B^2(f,r)=B(f,r)\cdot B(f,r)$.
Then
$ f^2\in\mathop{\rm Int} B^2(f,r)$ for all $r>0$ if and only if
either $f\ge 0$ on $[0,1]$ or $f\le 0$ on $[0,1]$.
Another result states that $\mathop{\rm Int}(B_1\cdot B_2)\neq\emptyset$ for any two balls $B_1$
and $B_2$ in $C$. We also prove that if
$\Phi\in\{+,\cdot,\min,\max\}$, then
the set $\Phi^{-1}(E)$ is residual whenever $E$ is
residual in $C$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
denote banach space real valued continuous functions phi colon times phi min max phi mapping multiplication phi cdot ball cdot mathop int only either another result states mathop int cdot neq emptyset balls prove phi cdot min max set phi residual whenever residual
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Marek Balcerzak 1 ; Artur Wachowicz 1 ; Władysław Wilczyński 2
@article{10_4064_sm170_2_5,
     author = {Marek Balcerzak and Artur Wachowicz and W{\l}adys{\l}aw Wilczy\'nski},
     title = {Multiplying balls in the space of continuous functions on $[0,1]$},
     journal = {Studia Mathematica},
     pages = {203--209},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2005},
     doi = {10.4064/sm170-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-5/}
}
                      
                      
                    TY - JOUR AU - Marek Balcerzak AU - Artur Wachowicz AU - Władysław Wilczyński TI - Multiplying balls in the space of continuous functions on $[0,1]$ JO - Studia Mathematica PY - 2005 SP - 203 EP - 209 VL - 170 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-5/ DO - 10.4064/sm170-2-5 LA - en ID - 10_4064_sm170_2_5 ER -
%0 Journal Article %A Marek Balcerzak %A Artur Wachowicz %A Władysław Wilczyński %T Multiplying balls in the space of continuous functions on $[0,1]$ %J Studia Mathematica %D 2005 %P 203-209 %V 170 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-5/ %R 10.4064/sm170-2-5 %G en %F 10_4064_sm170_2_5
Marek Balcerzak; Artur Wachowicz; Władysław Wilczyński. Multiplying balls in the space of continuous functions on $[0,1]$. Studia Mathematica, Tome 170 (2005) no. 2, pp. 203-209. doi: 10.4064/sm170-2-5
Cité par Sources :
