Multiplying balls in the space of continuous functions on $[0,1]$
Studia Mathematica, Tome 170 (2005) no. 2, pp. 203-209

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $C$ denote the Banach space of real-valued continuous functions on $[0,1]$. Let $\Phi\colon C\times C\to C$. If $\Phi\in \{ +,\min ,\max\}$ then $\Phi$ is an open mapping but the multiplication $\Phi =\cdot$ is not open. For an open ball $B(f,r)$ in $C$ let $B^2(f,r)=B(f,r)\cdot B(f,r)$. Then $ f^2\in\mathop{\rm Int} B^2(f,r)$ for all $r>0$ if and only if either $f\ge 0$ on $[0,1]$ or $f\le 0$ on $[0,1]$. Another result states that $\mathop{\rm Int}(B_1\cdot B_2)\neq\emptyset$ for any two balls $B_1$ and $B_2$ in $C$. We also prove that if $\Phi\in\{+,\cdot,\min,\max\}$, then the set $\Phi^{-1}(E)$ is residual whenever $E$ is residual in $C$.
DOI : 10.4064/sm170-2-5
Keywords: denote banach space real valued continuous functions phi colon times phi min max phi mapping multiplication phi cdot ball cdot mathop int only either another result states mathop int cdot neq emptyset balls prove phi cdot min max set phi residual whenever residual

Marek Balcerzak 1 ; Artur Wachowicz 1 ; Władysław Wilczyński 2

1 Institute of Mathematics Łódź Technical University Wólczańska 215 93-005 Łódź, Poland
2 Faculty of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland
@article{10_4064_sm170_2_5,
     author = {Marek Balcerzak and Artur Wachowicz and W{\l}adys{\l}aw Wilczy\'nski},
     title = {Multiplying balls in the space of continuous functions on $[0,1]$},
     journal = {Studia Mathematica},
     pages = {203--209},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2005},
     doi = {10.4064/sm170-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-5/}
}
TY  - JOUR
AU  - Marek Balcerzak
AU  - Artur Wachowicz
AU  - Władysław Wilczyński
TI  - Multiplying balls in the space of continuous functions on $[0,1]$
JO  - Studia Mathematica
PY  - 2005
SP  - 203
EP  - 209
VL  - 170
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-5/
DO  - 10.4064/sm170-2-5
LA  - en
ID  - 10_4064_sm170_2_5
ER  - 
%0 Journal Article
%A Marek Balcerzak
%A Artur Wachowicz
%A Władysław Wilczyński
%T Multiplying balls in the space of continuous functions on $[0,1]$
%J Studia Mathematica
%D 2005
%P 203-209
%V 170
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-5/
%R 10.4064/sm170-2-5
%G en
%F 10_4064_sm170_2_5
Marek Balcerzak; Artur Wachowicz; Władysław Wilczyński. Multiplying balls in the space of continuous functions on $[0,1]$. Studia Mathematica, Tome 170 (2005) no. 2, pp. 203-209. doi: 10.4064/sm170-2-5

Cité par Sources :