Polynomial functions on the classical projective spaces
Studia Mathematica, Tome 170 (2005) no. 1, pp. 77-87
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The polynomial functions on a projective space over a field
${\mathbb K}={\mathbb R}$, $\mathbb C$ or $\mathbb H$ come from the corresponding sphere
via the Hopf fibration. The main theorem states that every
polynomial function $\phi(x)$ of degree $d$ is a linear
combination of “elementary” functions $|\langle{x,\cdot }\rangle|^d$.
Keywords:
polynomial functions projective space field mathbb mathbb mathbb nbsp mathbb come corresponding sphere via hopf fibration main theorem states every polynomial function phi degree linear combination elementary functions langle cdot rangle
Affiliations des auteurs :
Yu. I. Lyubich 1 ; O. A. Shatalova 1
@article{10_4064_sm170_1_4,
author = {Yu. I. Lyubich and O. A. Shatalova},
title = {Polynomial functions on the classical projective spaces},
journal = {Studia Mathematica},
pages = {77--87},
publisher = {mathdoc},
volume = {170},
number = {1},
year = {2005},
doi = {10.4064/sm170-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-1-4/}
}
TY - JOUR AU - Yu. I. Lyubich AU - O. A. Shatalova TI - Polynomial functions on the classical projective spaces JO - Studia Mathematica PY - 2005 SP - 77 EP - 87 VL - 170 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm170-1-4/ DO - 10.4064/sm170-1-4 LA - en ID - 10_4064_sm170_1_4 ER -
Yu. I. Lyubich; O. A. Shatalova. Polynomial functions on the classical projective spaces. Studia Mathematica, Tome 170 (2005) no. 1, pp. 77-87. doi: 10.4064/sm170-1-4
Cité par Sources :