Uniqueness of minimal projections onto two-dimensional subspaces
Studia Mathematica, Tome 168 (2005) no. 3, pp. 273-284

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that minimal projections from $L_p$ ($1 p \infty $) onto any two-dimensional subspace are unique. This result complements the theorems of W. Odyniec ([OL, Theorem I.1.3], [O3]). We also investigate the minimal number of norming points for such projections.
DOI : 10.4064/sm168-3-6
Keywords: prove minimal projections infty two dimensional subspace unique result complements theorems odyniec theorem investigate minimal number norming points projections

Boris Shekhtman 1 ; Lesław Skrzypek 1

1 Department of Mathematics University of South Florida 4202 E. Fowler Ave., PHY 114 Tampa, FL 33620-5700, U.S.A.
@article{10_4064_sm168_3_6,
     author = {Boris Shekhtman and Les{\l}aw Skrzypek},
     title = {Uniqueness of minimal projections onto
 two-dimensional subspaces},
     journal = {Studia Mathematica},
     pages = {273--284},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2005},
     doi = {10.4064/sm168-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-6/}
}
TY  - JOUR
AU  - Boris Shekhtman
AU  - Lesław Skrzypek
TI  - Uniqueness of minimal projections onto
 two-dimensional subspaces
JO  - Studia Mathematica
PY  - 2005
SP  - 273
EP  - 284
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-6/
DO  - 10.4064/sm168-3-6
LA  - en
ID  - 10_4064_sm168_3_6
ER  - 
%0 Journal Article
%A Boris Shekhtman
%A Lesław Skrzypek
%T Uniqueness of minimal projections onto
 two-dimensional subspaces
%J Studia Mathematica
%D 2005
%P 273-284
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-6/
%R 10.4064/sm168-3-6
%G en
%F 10_4064_sm168_3_6
Boris Shekhtman; Lesław Skrzypek. Uniqueness of minimal projections onto
 two-dimensional subspaces. Studia Mathematica, Tome 168 (2005) no. 3, pp. 273-284. doi: 10.4064/sm168-3-6

Cité par Sources :