Uniqueness of minimal projections onto
two-dimensional subspaces
Studia Mathematica, Tome 168 (2005) no. 3, pp. 273-284
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that minimal projections from $L_p$ ($1 p \infty $) onto any two-dimensional subspace are unique. This result complements the theorems of W. Odyniec ([OL, Theorem I.1.3], [O3]). We also investigate the minimal number of norming points for such projections.
Keywords:
prove minimal projections infty two dimensional subspace unique result complements theorems odyniec theorem investigate minimal number norming points projections
Affiliations des auteurs :
Boris Shekhtman 1 ; Lesław Skrzypek 1
@article{10_4064_sm168_3_6,
author = {Boris Shekhtman and Les{\l}aw Skrzypek},
title = {Uniqueness of minimal projections onto
two-dimensional subspaces},
journal = {Studia Mathematica},
pages = {273--284},
publisher = {mathdoc},
volume = {168},
number = {3},
year = {2005},
doi = {10.4064/sm168-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-6/}
}
TY - JOUR AU - Boris Shekhtman AU - Lesław Skrzypek TI - Uniqueness of minimal projections onto two-dimensional subspaces JO - Studia Mathematica PY - 2005 SP - 273 EP - 284 VL - 168 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-6/ DO - 10.4064/sm168-3-6 LA - en ID - 10_4064_sm168_3_6 ER -
Boris Shekhtman; Lesław Skrzypek. Uniqueness of minimal projections onto two-dimensional subspaces. Studia Mathematica, Tome 168 (2005) no. 3, pp. 273-284. doi: 10.4064/sm168-3-6
Cité par Sources :