A condition equivalent to uniform ergodicity
Studia Mathematica, Tome 167 (2005) no. 3, pp. 215-218

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T$ be a linear operator on a Banach space $X$ with $\mathop {\rm sup}_n \| T^n/n^w\| \infty $ for some $0\le w 1$. We show that the following conditions are equivalent: (i) $n^{-1}\sum _{k=0}^{n-1} T^k$ converges uniformly; (ii) ${\rm cl}\, (I -T)X = \{ z \in X : \mathop {\rm lim}_n\sum _{k=1}^n { T^kz/k}\hbox { exists} \} $.
DOI : 10.4064/sm167-3-2
Keywords: linear operator banach space mathop sup w infty following conditions equivalent sum n converges uniformly t mathop lim sum hbox exists

Maria Elena Becker 1

1 Departamento de Matemática Fac. Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria Pab I 1428 Buenos Aires, Argentina
@article{10_4064_sm167_3_2,
     author = {Maria Elena Becker},
     title = {A condition equivalent to uniform ergodicity},
     journal = {Studia Mathematica},
     pages = {215--218},
     publisher = {mathdoc},
     volume = {167},
     number = {3},
     year = {2005},
     doi = {10.4064/sm167-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-2/}
}
TY  - JOUR
AU  - Maria Elena Becker
TI  - A condition equivalent to uniform ergodicity
JO  - Studia Mathematica
PY  - 2005
SP  - 215
EP  - 218
VL  - 167
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-2/
DO  - 10.4064/sm167-3-2
LA  - en
ID  - 10_4064_sm167_3_2
ER  - 
%0 Journal Article
%A Maria Elena Becker
%T A condition equivalent to uniform ergodicity
%J Studia Mathematica
%D 2005
%P 215-218
%V 167
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-2/
%R 10.4064/sm167-3-2
%G en
%F 10_4064_sm167_3_2
Maria Elena Becker. A condition equivalent to uniform ergodicity. Studia Mathematica, Tome 167 (2005) no. 3, pp. 215-218. doi: 10.4064/sm167-3-2

Cité par Sources :