Classes of measures closed under mixing and
 convolution. Weak stability
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 167 (2005) no. 3, pp. 195-213
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              For a random vector $X$ with a fixed distribution $\mu$ we
construct a class of distributions ${\cal M}(\mu)= \{
\mu\circ\lambda: \lambda\in{\cal P}\}$, which is the class of
all distributions of random vectors $X {\mit\Theta}$, where $
{\mit\Theta}$ is independent of $X$ and has distribution $\lambda$. The
problem is to characterize the distributions $\mu$ for which
${\cal M}(\mu)$ is closed under convolution. This is equivalent
to the characterization of the random vectors $X$
such that for all
random variables ${\mit\Theta}_1, {\mit\Theta}_2$ independent of $X,
X^{\prime}$ there exists a random variable ${\mit\Theta}$ independent
of $X$ such that
\[
X {\mit\Theta}_1 + X^{\prime}{\mit\Theta}_2 \stackrel{d}{=} X {\mit\Theta}.
\]
We show that for every $X$ this property is
equivalent to the following condition:
\[
\forall  a,b \in {\mathbb R} \exists  {\mit\Theta}
\hbox{ independent of } X, \quad
aX + b X^{\prime}\stackrel{d}{=} X {\mit\Theta}.
\]
This condition reminds the characterizing condition for
symmetric stable random vectors, except that ${\mit\Theta}$
is here a
random variable, instead of a constant.The above problem has a direct connection with the concept
of generalized convolutions and with the characterization of
the extreme points for the set of pseudo-isotropic
distributions.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
random vector fixed distribution construct class distributions cal circ lambda lambda cal which class distributions random vectors mit theta where mit theta independent has distribution lambda problem characterize distributions which cal closed under convolution equivalent characterization random vectors random variables mit theta mit theta independent prime there exists random variable mit theta independent mit theta prime mit theta stackrel mit theta every property equivalent following condition forall mathbb exists mit theta hbox independent quad prime stackrel mit theta condition reminds characterizing condition symmetric stable random vectors except mit theta here random variable instead constant above problem has direct connection concept generalized convolutions characterization extreme points set pseudo isotropic distributions
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              J. K. Misiewicz 1 ; K. Oleszkiewicz 2 ; K. Urbanik 3
@article{10_4064_sm167_3_1,
     author = {J. K. Misiewicz and K. Oleszkiewicz and K. Urbanik},
     title = {Classes of measures closed under mixing and
 convolution. {Weak} stability},
     journal = {Studia Mathematica},
     pages = {195--213},
     publisher = {mathdoc},
     volume = {167},
     number = {3},
     year = {2005},
     doi = {10.4064/sm167-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-1/}
}
                      
                      
                    TY - JOUR AU - J. K. Misiewicz AU - K. Oleszkiewicz AU - K. Urbanik TI - Classes of measures closed under mixing and convolution. Weak stability JO - Studia Mathematica PY - 2005 SP - 195 EP - 213 VL - 167 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-1/ DO - 10.4064/sm167-3-1 LA - en ID - 10_4064_sm167_3_1 ER -
%0 Journal Article %A J. K. Misiewicz %A K. Oleszkiewicz %A K. Urbanik %T Classes of measures closed under mixing and convolution. Weak stability %J Studia Mathematica %D 2005 %P 195-213 %V 167 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-1/ %R 10.4064/sm167-3-1 %G en %F 10_4064_sm167_3_1
J. K. Misiewicz; K. Oleszkiewicz; K. Urbanik. Classes of measures closed under mixing and convolution. Weak stability. Studia Mathematica, Tome 167 (2005) no. 3, pp. 195-213. doi: 10.4064/sm167-3-1
Cité par Sources :
