Classes of measures closed under mixing and convolution. Weak stability
Studia Mathematica, Tome 167 (2005) no. 3, pp. 195-213

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a random vector $X$ with a fixed distribution $\mu$ we construct a class of distributions ${\cal M}(\mu)= \{ \mu\circ\lambda: \lambda\in{\cal P}\}$, which is the class of all distributions of random vectors $X {\mit\Theta}$, where $ {\mit\Theta}$ is independent of $X$ and has distribution $\lambda$. The problem is to characterize the distributions $\mu$ for which ${\cal M}(\mu)$ is closed under convolution. This is equivalent to the characterization of the random vectors $X$ such that for all random variables ${\mit\Theta}_1, {\mit\Theta}_2$ independent of $X, X^{\prime}$ there exists a random variable ${\mit\Theta}$ independent of $X$ such that \[ X {\mit\Theta}_1 + X^{\prime}{\mit\Theta}_2 \stackrel{d}{=} X {\mit\Theta}. \] We show that for every $X$ this property is equivalent to the following condition: \[ \forall a,b \in {\mathbb R} \exists {\mit\Theta} \hbox{ independent of } X, \quad aX + b X^{\prime}\stackrel{d}{=} X {\mit\Theta}. \] This condition reminds the characterizing condition for symmetric stable random vectors, except that ${\mit\Theta}$ is here a random variable, instead of a constant.The above problem has a direct connection with the concept of generalized convolutions and with the characterization of the extreme points for the set of pseudo-isotropic distributions.
DOI : 10.4064/sm167-3-1
Keywords: random vector fixed distribution construct class distributions cal circ lambda lambda cal which class distributions random vectors mit theta where mit theta independent has distribution lambda problem characterize distributions which cal closed under convolution equivalent characterization random vectors random variables mit theta mit theta independent prime there exists random variable mit theta independent mit theta prime mit theta stackrel mit theta every property equivalent following condition forall mathbb exists mit theta hbox independent quad prime stackrel mit theta condition reminds characterizing condition symmetric stable random vectors except mit theta here random variable instead constant above problem has direct connection concept generalized convolutions characterization extreme points set pseudo isotropic distributions

J. K. Misiewicz 1 ; K. Oleszkiewicz 2 ; K. Urbanik 3

1 Department of Mathematics, Informatics and Econometry University of Zielona Góra Podgórna 50 65-246 Zielona Góra, Poland
2 Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
3 Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_sm167_3_1,
     author = {J. K. Misiewicz and K. Oleszkiewicz and K. Urbanik},
     title = {Classes of measures closed under mixing and
 convolution. {Weak} stability},
     journal = {Studia Mathematica},
     pages = {195--213},
     publisher = {mathdoc},
     volume = {167},
     number = {3},
     year = {2005},
     doi = {10.4064/sm167-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-1/}
}
TY  - JOUR
AU  - J. K. Misiewicz
AU  - K. Oleszkiewicz
AU  - K. Urbanik
TI  - Classes of measures closed under mixing and
 convolution. Weak stability
JO  - Studia Mathematica
PY  - 2005
SP  - 195
EP  - 213
VL  - 167
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-1/
DO  - 10.4064/sm167-3-1
LA  - en
ID  - 10_4064_sm167_3_1
ER  - 
%0 Journal Article
%A J. K. Misiewicz
%A K. Oleszkiewicz
%A K. Urbanik
%T Classes of measures closed under mixing and
 convolution. Weak stability
%J Studia Mathematica
%D 2005
%P 195-213
%V 167
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-1/
%R 10.4064/sm167-3-1
%G en
%F 10_4064_sm167_3_1
J. K. Misiewicz; K. Oleszkiewicz; K. Urbanik. Classes of measures closed under mixing and
 convolution. Weak stability. Studia Mathematica, Tome 167 (2005) no. 3, pp. 195-213. doi: 10.4064/sm167-3-1

Cité par Sources :