1Department of Mathematics, Informatics and Econometry University of Zielona Góra Podgórna 50 65-246 Zielona Góra, Poland 2Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland 3Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
Studia Mathematica, Tome 167 (2005) no. 3, pp. 195-213
For a random vector $X$ with a fixed distribution $\mu$ we
construct a class of distributions ${\cal M}(\mu)= \{
\mu\circ\lambda: \lambda\in{\cal P}\}$, which is the class of
all distributions of random vectors $X {\mit\Theta}$, where $
{\mit\Theta}$ is independent of $X$ and has distribution $\lambda$. The
problem is to characterize the distributions $\mu$ for which
${\cal M}(\mu)$ is closed under convolution. This is equivalent
to the characterization of the random vectors $X$
such that for all
random variables ${\mit\Theta}_1, {\mit\Theta}_2$ independent of $X,
X^{\prime}$ there exists a random variable ${\mit\Theta}$ independent
of $X$ such that
\[
X {\mit\Theta}_1 + X^{\prime}{\mit\Theta}_2 \stackrel{d}{=} X {\mit\Theta}.
\]
We show that for every $X$ this property is
equivalent to the following condition:
\[
\forall a,b \in {\mathbb R} \exists {\mit\Theta}
\hbox{ independent of } X, \quad
aX + b X^{\prime}\stackrel{d}{=} X {\mit\Theta}.
\]
This condition reminds the characterizing condition for
symmetric stable random vectors, except that ${\mit\Theta}$
is here a
random variable, instead of a constant.The above problem has a direct connection with the concept
of generalized convolutions and with the characterization of
the extreme points for the set of pseudo-isotropic
distributions.
Keywords:
random vector fixed distribution construct class distributions cal circ lambda lambda cal which class distributions random vectors mit theta where mit theta independent has distribution lambda problem characterize distributions which cal closed under convolution equivalent characterization random vectors random variables mit theta mit theta independent prime there exists random variable mit theta independent mit theta prime mit theta stackrel mit theta every property equivalent following condition forall mathbb exists mit theta hbox independent quad prime stackrel mit theta condition reminds characterizing condition symmetric stable random vectors except mit theta here random variable instead constant above problem has direct connection concept generalized convolutions characterization extreme points set pseudo isotropic distributions
Affiliations des auteurs :
J. K. Misiewicz 
1
;
K. Oleszkiewicz 
2
;
K. Urbanik 
3
1
Department of Mathematics, Informatics and Econometry University of Zielona Góra Podgórna 50 65-246 Zielona Góra, Poland
2
Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
3
Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_sm167_3_1,
author = {J. K. Misiewicz and K. Oleszkiewicz and K. Urbanik},
title = {Classes of measures closed under mixing and
convolution. {Weak} stability},
journal = {Studia Mathematica},
pages = {195--213},
year = {2005},
volume = {167},
number = {3},
doi = {10.4064/sm167-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-1/}
}
TY - JOUR
AU - J. K. Misiewicz
AU - K. Oleszkiewicz
AU - K. Urbanik
TI - Classes of measures closed under mixing and
convolution. Weak stability
JO - Studia Mathematica
PY - 2005
SP - 195
EP - 213
VL - 167
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-1/
DO - 10.4064/sm167-3-1
LA - en
ID - 10_4064_sm167_3_1
ER -
%0 Journal Article
%A J. K. Misiewicz
%A K. Oleszkiewicz
%A K. Urbanik
%T Classes of measures closed under mixing and
convolution. Weak stability
%J Studia Mathematica
%D 2005
%P 195-213
%V 167
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-1/
%R 10.4064/sm167-3-1
%G en
%F 10_4064_sm167_3_1
J. K. Misiewicz; K. Oleszkiewicz; K. Urbanik. Classes of measures closed under mixing and
convolution. Weak stability. Studia Mathematica, Tome 167 (2005) no. 3, pp. 195-213. doi: 10.4064/sm167-3-1