Idéaux fermés de certaines algèbres de Beurling
et application aux opérateurs à spectre dénombrable
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 167 (2005) no. 2, pp. 133-151
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              
We denote by $\mathbb{T}$ the unit circle and by $\mathbb{D}$ the unit disc of $\mathbb{C}$. Let $s$ be a non-negative real and $\omega$ a weight such that $\omega(n) = (1+n)^{s}$
$(n \geq 0)$ and  the sequence $( {\omega(-n)}/{(1+n)^{s}})_{n \geq 0}$ is non-decreasing. We define the Banach algebra
$$
A_{\omega}(\mathbb{T}) = \Big\{ f \in {\cal C}(\mathbb{T}) : \| f \|_{\omega} = \sum_{n = -\infty}^{+\infty} | \widehat {f}(n) | \omega(n)  +\infty \Big\}.
$$
If $I$ is a closed ideal of $A_{\omega}(\mathbb{T})$, we set $h^{0}(I) = 
\{ z \in \mathbb{T} :  f(z) = 0 \ (f \in I)\}$. We describe 
all closed ideals $I$ of $A_{\omega}(\mathbb{T})$ such that $h^{0}(I)$ is at most countable. A similar result is obtained for closed ideals of the algebra $A_{s}^{+}(\mathbb{T}) = \{ f \in A_{\omega}(\mathbb{T}) :  \widehat{f}(n) = 0 \
 (n0)\}$ without inner factor. 
Then we use this description to establish a link between operators with countable spectrum and interpolating sets for 
${{\large a}}^{\infty}$, the space of infinitely differentiable functions in the closed unit disc $\overline{\mathbb{D}}$ and holomorphic in $\mathbb{D}$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Mots-clés : 
denote mathbb unit circle mathbb unit disc mathbb non negative real omega weight omega geq sequence omega n geq non decreasing define banach algebra omega mathbb cal mathbb omega sum infty infty widehat omega infty closed ideal omega mathbb set mathbb describe closed ideals omega mathbb countable similar result obtained closed ideals algebra mathbb omega mathbb widehat without inner factor description establish link between operators countable spectrum interpolating sets large infty space infinitely differentiable functions closed unit disc overline mathbb holomorphic mathbb
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Cyril Agrafeuil 1
@article{10_4064_sm167_2_2,
     author = {Cyril Agrafeuil},
     title = {Id\'eaux ferm\'es de certaines alg\`ebres de {Beurling
et} application aux op\'erateurs \`a spectre d\'enombrable},
     journal = {Studia Mathematica},
     pages = {133--151},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2005},
     doi = {10.4064/sm167-2-2},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-2/}
}
                      
                      
                    TY - JOUR AU - Cyril Agrafeuil TI - Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable JO - Studia Mathematica PY - 2005 SP - 133 EP - 151 VL - 167 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-2/ DO - 10.4064/sm167-2-2 LA - fr ID - 10_4064_sm167_2_2 ER -
%0 Journal Article %A Cyril Agrafeuil %T Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable %J Studia Mathematica %D 2005 %P 133-151 %V 167 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-2/ %R 10.4064/sm167-2-2 %G fr %F 10_4064_sm167_2_2
Cyril Agrafeuil. Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable. Studia Mathematica, Tome 167 (2005) no. 2, pp. 133-151. doi: 10.4064/sm167-2-2
Cité par Sources :
