Idéaux fermés de certaines algèbres de Beurling
et application aux opérateurs à spectre dénombrable
Studia Mathematica, Tome 167 (2005) no. 2, pp. 133-151
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We denote by $\mathbb{T}$ the unit circle and by $\mathbb{D}$ the unit disc of $\mathbb{C}$. Let $s$ be a non-negative real and $\omega$ a weight such that $\omega(n) = (1+n)^{s}$
$(n \geq 0)$ and the sequence $( {\omega(-n)}/{(1+n)^{s}})_{n \geq 0}$ is non-decreasing. We define the Banach algebra
$$
A_{\omega}(\mathbb{T}) = \Big\{ f \in {\cal C}(\mathbb{T}) : \| f \|_{\omega} = \sum_{n = -\infty}^{+\infty} | \widehat {f}(n) | \omega(n) +\infty \Big\}.
$$
If $I$ is a closed ideal of $A_{\omega}(\mathbb{T})$, we set $h^{0}(I) =
\{ z \in \mathbb{T} : f(z) = 0 \ (f \in I)\}$. We describe
all closed ideals $I$ of $A_{\omega}(\mathbb{T})$ such that $h^{0}(I)$ is at most countable. A similar result is obtained for closed ideals of the algebra $A_{s}^{+}(\mathbb{T}) = \{ f \in A_{\omega}(\mathbb{T}) : \widehat{f}(n) = 0 \
(n0)\}$ without inner factor.
Then we use this description to establish a link between operators with countable spectrum and interpolating sets for
${{\large a}}^{\infty}$, the space of infinitely differentiable functions in the closed unit disc $\overline{\mathbb{D}}$ and holomorphic in $\mathbb{D}$.
Mots-clés :
denote mathbb unit circle mathbb unit disc mathbb non negative real omega weight omega geq sequence omega n geq non decreasing define banach algebra omega mathbb cal mathbb omega sum infty infty widehat omega infty closed ideal omega mathbb set mathbb describe closed ideals omega mathbb countable similar result obtained closed ideals algebra mathbb omega mathbb widehat without inner factor description establish link between operators countable spectrum interpolating sets large infty space infinitely differentiable functions closed unit disc overline mathbb holomorphic mathbb
Affiliations des auteurs :
Cyril Agrafeuil  1
@article{10_4064_sm167_2_2,
author = {Cyril Agrafeuil},
title = {Id\'eaux ferm\'es de certaines alg\`ebres de {Beurling
et} application aux op\'erateurs \`a spectre d\'enombrable},
journal = {Studia Mathematica},
pages = {133--151},
year = {2005},
volume = {167},
number = {2},
doi = {10.4064/sm167-2-2},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-2/}
}
TY - JOUR AU - Cyril Agrafeuil TI - Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable JO - Studia Mathematica PY - 2005 SP - 133 EP - 151 VL - 167 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-2/ DO - 10.4064/sm167-2-2 LA - fr ID - 10_4064_sm167_2_2 ER -
Cyril Agrafeuil. Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable. Studia Mathematica, Tome 167 (2005) no. 2, pp. 133-151. doi: 10.4064/sm167-2-2
Cité par Sources :