The topological entropy versus level sets for interval maps (part II)
Studia Mathematica, Tome 166 (2005) no. 1, pp. 11-27

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f\colon\, [a,b]\to [a,b]$ be a continuous function of the compact real interval such that (i) $\mathop{\rm card} f^{-1}(y)\ge 2$ for every $y\in [a,b]$; (ii) for some $m\in\{\infty,2,3,\dots\}$ there is a countable set $L\subset [a,b]$ such that $\mathop{\rm card} f^{-1}(y)\ge m$ for every $y\in [a,b]\setminus L$. We show that the topological entropy of $f$ is greater than or equal to $\log m$. This generalizes our previous result for $m=2$.
DOI : 10.4064/sm166-1-2
Keywords: colon continuous function compact real interval mathop card every infty dots there countable set subset mathop card every setminus topological entropy greater equal log generalizes previous result

Jozef Bobok 1

1 KM FSv ČVUT Thákurova 7 166 29 Praha 6, Czech Republic
@article{10_4064_sm166_1_2,
     author = {Jozef Bobok},
     title = {The topological entropy versus level sets
 for interval maps (part {II)}},
     journal = {Studia Mathematica},
     pages = {11--27},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2005},
     doi = {10.4064/sm166-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-2/}
}
TY  - JOUR
AU  - Jozef Bobok
TI  - The topological entropy versus level sets
 for interval maps (part II)
JO  - Studia Mathematica
PY  - 2005
SP  - 11
EP  - 27
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-2/
DO  - 10.4064/sm166-1-2
LA  - en
ID  - 10_4064_sm166_1_2
ER  - 
%0 Journal Article
%A Jozef Bobok
%T The topological entropy versus level sets
 for interval maps (part II)
%J Studia Mathematica
%D 2005
%P 11-27
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-2/
%R 10.4064/sm166-1-2
%G en
%F 10_4064_sm166_1_2
Jozef Bobok. The topological entropy versus level sets
 for interval maps (part II). Studia Mathematica, Tome 166 (2005) no. 1, pp. 11-27. doi: 10.4064/sm166-1-2

Cité par Sources :