Unconditionality of general Franklin systems
in $L^p[0,1]$, $1 p \infty $
Studia Mathematica, Tome 164 (2004) no. 2, pp. 161-204
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
By a general Franklin system corresponding to a dense sequence
${\cal T}=(t_n, n \geq 0)$ of points in $[0,1]$
we mean a sequence of orthonormal piecewise linear functions with
knots ${\cal T}$, that is, the $n$th function of the system has knots $t_0,
\ldots, t_n$.
The main result of this paper is that each general
Franklin system is an unconditional basis in $L^p[0,1]$,
$1 p \infty$.
Keywords:
general franklin system corresponding dense sequence cal geq points mean sequence orthonormal piecewise linear functions knots cal nth function system has knots ldots main result paper each general franklin system unconditional basis infty
Affiliations des auteurs :
Gegham G. Gevorkyan 1 ; Anna Kamont 2
@article{10_4064_sm164_2_4,
author = {Gegham G. Gevorkyan and Anna Kamont},
title = {Unconditionality of general {Franklin} systems
in $L^p[0,1]$, $1< p< \infty $},
journal = {Studia Mathematica},
pages = {161--204},
publisher = {mathdoc},
volume = {164},
number = {2},
year = {2004},
doi = {10.4064/sm164-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm164-2-4/}
}
TY - JOUR AU - Gegham G. Gevorkyan AU - Anna Kamont TI - Unconditionality of general Franklin systems in $L^p[0,1]$, $1< p< \infty $ JO - Studia Mathematica PY - 2004 SP - 161 EP - 204 VL - 164 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm164-2-4/ DO - 10.4064/sm164-2-4 LA - en ID - 10_4064_sm164_2_4 ER -
%0 Journal Article %A Gegham G. Gevorkyan %A Anna Kamont %T Unconditionality of general Franklin systems in $L^p[0,1]$, $1< p< \infty $ %J Studia Mathematica %D 2004 %P 161-204 %V 164 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm164-2-4/ %R 10.4064/sm164-2-4 %G en %F 10_4064_sm164_2_4
Gegham G. Gevorkyan; Anna Kamont. Unconditionality of general Franklin systems in $L^p[0,1]$, $1< p< \infty $. Studia Mathematica, Tome 164 (2004) no. 2, pp. 161-204. doi: 10.4064/sm164-2-4
Cité par Sources :