The Lebesgue constants for the Franklin orthogonal system
Studia Mathematica, Tome 164 (2004) no. 1, pp. 55-73
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
To each set of knots
$t_i = {i/ 2n}$ for $i=0,\dots ,2\nu$ and
$t_i= {(i-\nu) / n}$ for $i=2\nu +1,\dots, n+\nu $,
with $1\leq \nu\leq n$, there corresponds the space
${\cal S}_{\nu ,n}$ of all
piecewise linear and continuous functions on $I=[0,1]$ with knots $t_i$
and the orthogonal projection $P_{\nu ,n}$ of
$L^2(I)$ onto ${\cal S}_{\nu ,n}$. The main result is
$$
\lim_{(n-\nu)\wedge\nu\to\infty}\|P_{\nu ,n}\|_1 =
\sup_{\nu ,n\,:\,1\leq \nu\leq n}\|P_{\nu ,n}\|_1 = 2+(2-\sqrt{3})^2.
$$
This shows that the Lebesgue constant for
the Franklin orthogonal system is $2+(2-\sqrt{3})^2$.
Mots-clés :
each set knots dots i dots leq leq there corresponds space cal piecewise linear continuous functions knots orthogonal projection cal main result lim n wedge infty sup leq leq sqrt shows lebesgue constant franklin orthogonal system sqrt
Affiliations des auteurs :
Z. Ciesielski 1 ; A. Kamont 1
@article{10_4064_sm164_1_4,
author = {Z. Ciesielski and A. Kamont},
title = {The {Lebesgue} constants for the {Franklin} orthogonal system},
journal = {Studia Mathematica},
pages = {55--73},
publisher = {mathdoc},
volume = {164},
number = {1},
year = {2004},
doi = {10.4064/sm164-1-4},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-4/}
}
TY - JOUR AU - Z. Ciesielski AU - A. Kamont TI - The Lebesgue constants for the Franklin orthogonal system JO - Studia Mathematica PY - 2004 SP - 55 EP - 73 VL - 164 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-4/ DO - 10.4064/sm164-1-4 LA - de ID - 10_4064_sm164_1_4 ER -
Z. Ciesielski; A. Kamont. The Lebesgue constants for the Franklin orthogonal system. Studia Mathematica, Tome 164 (2004) no. 1, pp. 55-73. doi: 10.4064/sm164-1-4
Cité par Sources :