Common zero sets of equivalent singular inner functions
Studia Mathematica, Tome 163 (2004) no. 3, pp. 231-255

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mu $ and $\lambda$ be bounded positive singular measures on the unit circle such that $\mu \perp \lambda$. It is proved that there exist positive measures $\mu_0$ and $\lambda_0$ such that $\mu_0 \sim \mu$, $\lambda_0 \sim \lambda$, and $\{|\psi_{\mu_0}| 1\} \cap \{|\psi_{\lambda_0}| 1\} = \emptyset$, where $\psi_\mu$ is the associated singular inner function of $\mu$. Let ${\cal Z}(\mu) = \bigcap_{\{\nu;\,\nu \sim \mu\}} Z(\psi_\nu)$ be the common zeros of equivalent singular inner functions of $\psi_\mu$. Then ${\cal Z}(\mu) \not= \emptyset$ and ${\cal Z}(\mu) \cap {\cal Z}(\lambda) = \emptyset$. It follows that $\mu \ll \lambda$ if and only if ${\cal Z}(\mu) \subset {\cal Z}(\lambda)$. Hence ${\cal Z}(\mu)$ is the set in the maximal ideal space of $H^\infty$ which relates naturally to the set of measures equivalent to $\mu$. Some basic properties of ${\cal Z}(\mu)$ are given.
DOI : 10.4064/sm163-3-3
Keywords: lambda bounded positive singular measures unit circle perp lambda proved there exist positive measures lambda sim lambda sim lambda psi cap psi lambda emptyset where psi associated singular inner function nbsp cal bigcap sim psi common zeros equivalent singular inner functions psi cal emptyset cal cap cal lambda emptyset follows lambda only cal subset cal lambda hence cal set maximal ideal space infty which relates naturally set measures equivalent basic properties cal given

Keiji Izuchi 1

1 Department of Mathematics Niigata University Niigata 950-2181, Japan
@article{10_4064_sm163_3_3,
     author = {Keiji Izuchi},
     title = {Common zero sets of equivalent
 singular inner functions},
     journal = {Studia Mathematica},
     pages = {231--255},
     publisher = {mathdoc},
     volume = {163},
     number = {3},
     year = {2004},
     doi = {10.4064/sm163-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm163-3-3/}
}
TY  - JOUR
AU  - Keiji Izuchi
TI  - Common zero sets of equivalent
 singular inner functions
JO  - Studia Mathematica
PY  - 2004
SP  - 231
EP  - 255
VL  - 163
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm163-3-3/
DO  - 10.4064/sm163-3-3
LA  - en
ID  - 10_4064_sm163_3_3
ER  - 
%0 Journal Article
%A Keiji Izuchi
%T Common zero sets of equivalent
 singular inner functions
%J Studia Mathematica
%D 2004
%P 231-255
%V 163
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm163-3-3/
%R 10.4064/sm163-3-3
%G en
%F 10_4064_sm163_3_3
Keiji Izuchi. Common zero sets of equivalent
 singular inner functions. Studia Mathematica, Tome 163 (2004) no. 3, pp. 231-255. doi: 10.4064/sm163-3-3

Cité par Sources :