Common zero sets of equivalent
singular inner functions
Studia Mathematica, Tome 163 (2004) no. 3, pp. 231-255
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mu $ and $\lambda$ be bounded
positive singular measures
on the unit circle such that $\mu \perp \lambda$.
It is proved that there exist positive measures
$\mu_0$ and $\lambda_0$ such that $\mu_0 \sim \mu$, $\lambda_0
\sim \lambda$, and $\{|\psi_{\mu_0}| 1\} \cap
\{|\psi_{\lambda_0}| 1\} = \emptyset$, where $\psi_\mu$
is the associated singular inner function of $\mu$.
Let ${\cal Z}(\mu) = \bigcap_{\{\nu;\,\nu \sim \mu\}} Z(\psi_\nu)$
be the common zeros of equivalent singular inner functions of $\psi_\mu$.
Then ${\cal Z}(\mu) \not= \emptyset$ and ${\cal Z}(\mu) \cap
{\cal Z}(\lambda) = \emptyset$.
It follows that $\mu \ll \lambda$ if and only if
${\cal Z}(\mu) \subset {\cal Z}(\lambda)$.
Hence ${\cal Z}(\mu)$ is the set in the maximal ideal space
of $H^\infty$ which relates naturally
to the set of measures equivalent to $\mu$.
Some basic properties of ${\cal Z}(\mu)$ are given.
Keywords:
lambda bounded positive singular measures unit circle perp lambda proved there exist positive measures lambda sim lambda sim lambda psi cap psi lambda emptyset where psi associated singular inner function nbsp cal bigcap sim psi common zeros equivalent singular inner functions psi cal emptyset cal cap cal lambda emptyset follows lambda only cal subset cal lambda hence cal set maximal ideal space infty which relates naturally set measures equivalent basic properties cal given
Affiliations des auteurs :
Keiji Izuchi 1
@article{10_4064_sm163_3_3,
author = {Keiji Izuchi},
title = {Common zero sets of equivalent
singular inner functions},
journal = {Studia Mathematica},
pages = {231--255},
publisher = {mathdoc},
volume = {163},
number = {3},
year = {2004},
doi = {10.4064/sm163-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm163-3-3/}
}
Keiji Izuchi. Common zero sets of equivalent singular inner functions. Studia Mathematica, Tome 163 (2004) no. 3, pp. 231-255. doi: 10.4064/sm163-3-3
Cité par Sources :