Interpolation by bivariate polynomials
based on Radon projections
Studia Mathematica, Tome 162 (2004) no. 2, pp. 141-160
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any given set of angles $\theta _0 \ldots
\theta _n$ in
$[0, \pi )$,
we show that a set of ${n+2 \choose 2}$ Radon projections,
consisting of $k$ parallel $X$-ray beams in each direction $\theta
_k$, $k=0, \ldots , n$, determines uniquely algebraic polynomials
of degree $n$ in two variables.
Keywords:
given set angles theta ldots theta set choose radon projections consisting parallel x ray beams each direction theta ldots determines uniquely algebraic polynomials degree variables
Affiliations des auteurs :
B. Bojanov 1 ; I. K. Georgieva 2
@article{10_4064_sm162_2_3,
author = {B. Bojanov and I. K. Georgieva},
title = {Interpolation by bivariate polynomials
based on {Radon} projections},
journal = {Studia Mathematica},
pages = {141--160},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {2004},
doi = {10.4064/sm162-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-3/}
}
TY - JOUR AU - B. Bojanov AU - I. K. Georgieva TI - Interpolation by bivariate polynomials based on Radon projections JO - Studia Mathematica PY - 2004 SP - 141 EP - 160 VL - 162 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-3/ DO - 10.4064/sm162-2-3 LA - en ID - 10_4064_sm162_2_3 ER -
B. Bojanov; I. K. Georgieva. Interpolation by bivariate polynomials based on Radon projections. Studia Mathematica, Tome 162 (2004) no. 2, pp. 141-160. doi: 10.4064/sm162-2-3
Cité par Sources :