1Department of Mathematics University of Sofia Blvd. James Boucher 5 1164 Sofia, Bulgaria 2Institute of Mathematics Bulgarian Academy of Sciences Akad. G. Bonchev St., bl. 8 1113 Sofia, Bulgaria
Studia Mathematica, Tome 162 (2004) no. 2, pp. 141-160
For any given set of angles $\theta _0 \ldots
\theta _n$ in
$[0, \pi )$,
we show that a set of ${n+2 \choose 2}$ Radon projections,
consisting of $k$ parallel $X$-ray beams in each direction $\theta
_k$, $k=0, \ldots , n$, determines uniquely algebraic polynomials
of degree $n$ in two variables.
Keywords:
given set angles theta ldots theta set choose radon projections consisting parallel x ray beams each direction theta ldots determines uniquely algebraic polynomials degree variables
Affiliations des auteurs :
B. Bojanov 
1
;
I. K. Georgieva 
2
1
Department of Mathematics University of Sofia Blvd. James Boucher 5 1164 Sofia, Bulgaria
2
Institute of Mathematics Bulgarian Academy of Sciences Akad. G. Bonchev St., bl. 8 1113 Sofia, Bulgaria
@article{10_4064_sm162_2_3,
author = {B. Bojanov and I. K. Georgieva},
title = {Interpolation by bivariate polynomials
based on {Radon} projections},
journal = {Studia Mathematica},
pages = {141--160},
year = {2004},
volume = {162},
number = {2},
doi = {10.4064/sm162-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-3/}
}
TY - JOUR
AU - B. Bojanov
AU - I. K. Georgieva
TI - Interpolation by bivariate polynomials
based on Radon projections
JO - Studia Mathematica
PY - 2004
SP - 141
EP - 160
VL - 162
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-3/
DO - 10.4064/sm162-2-3
LA - en
ID - 10_4064_sm162_2_3
ER -
%0 Journal Article
%A B. Bojanov
%A I. K. Georgieva
%T Interpolation by bivariate polynomials
based on Radon projections
%J Studia Mathematica
%D 2004
%P 141-160
%V 162
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-3/
%R 10.4064/sm162-2-3
%G en
%F 10_4064_sm162_2_3
B. Bojanov; I. K. Georgieva. Interpolation by bivariate polynomials
based on Radon projections. Studia Mathematica, Tome 162 (2004) no. 2, pp. 141-160. doi: 10.4064/sm162-2-3