Greedy approximation and the multivariate Haar system
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 161 (2004) no. 3, pp. 199-223
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study nonlinear $m$-term approximation in a Banach space with regard to a basis. It is known that in the case of a greedy basis (like the Haar basis ${\mathcal  H}$ in $L_p([0,1])$, 
$1 p \infty $) a greedy type algorithm realizes nearly best $m$-term approximation for any individual function. In this paper we generalize this result in two directions. First, instead of a greedy algorithm we consider a weak greedy algorithm. Second, we study in detail unconditional nongreedy bases (like the multivariate Haar basis ${\mathcal  H}^d={\mathcal  H}\times \mathinner {\ldotp \ldotp \ldotp }\times {\mathcal  H}$ in $L_p([0,1]^d)$, 
$1 p \infty $, $p\not =2$). We prove some convergence results and also some results on convergence rate of weak type greedy algorithms. Our results are expressed in terms of properties of the basis with respect to a given weakness sequence.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
study nonlinear m term approximation banach space regard basis known greedy basis haar basis mathcal infty greedy type algorithm realizes nearly best m term approximation individual function paper generalize result directions first instead greedy algorithm consider weak greedy algorithm second study detail unconditional nongreedy bases multivariate haar basis mathcal mathcal times mathinner ldotp ldotp ldotp times mathcal infty prove convergence results results convergence rate weak type greedy algorithms results expressed terms properties basis respect given weakness sequence
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              A. Kamont 1 ; V. N. Temlyakov 2
@article{10_4064_sm161_3_1,
     author = {A. Kamont and V. N. Temlyakov},
     title = {Greedy approximation and the multivariate {Haar} system},
     journal = {Studia Mathematica},
     pages = {199--223},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {2004},
     doi = {10.4064/sm161-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm161-3-1/}
}
                      
                      
                    TY - JOUR AU - A. Kamont AU - V. N. Temlyakov TI - Greedy approximation and the multivariate Haar system JO - Studia Mathematica PY - 2004 SP - 199 EP - 223 VL - 161 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm161-3-1/ DO - 10.4064/sm161-3-1 LA - en ID - 10_4064_sm161_3_1 ER -
A. Kamont; V. N. Temlyakov. Greedy approximation and the multivariate Haar system. Studia Mathematica, Tome 161 (2004) no. 3, pp. 199-223. doi: 10.4064/sm161-3-1
Cité par Sources :