Minimal ideals of group algebras
Studia Mathematica, Tome 160 (2004) no. 3, pp. 205-229

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We first study the behavior of weights on a simply connected nilpotent Lie group $G$. Then for a subalgebra $A$ of $L^1(G)$ containing the Schwartz algebra ${\mathcal S}(G)$ as a dense subspace, we characterize all closed two-sided ideals of $A$ whose hull reduces to one point which is a character.
DOI : 10.4064/sm160-3-2
Keywords: first study behavior weights simply connected nilpotent lie group subalgebra containing schwartz algebra mathcal dense subspace characterize closed two sided ideals whose hull reduces point which character

David Alexander 1 ; Jean Ludwig 1

1 Département de Mathématiques et d'Informatique Université de Metz Ile du Saulcy 57045 Metz Cedex 01, France
@article{10_4064_sm160_3_2,
     author = {David Alexander and Jean Ludwig},
     title = {Minimal ideals of group algebras},
     journal = {Studia Mathematica},
     pages = {205--229},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2004},
     doi = {10.4064/sm160-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-2/}
}
TY  - JOUR
AU  - David Alexander
AU  - Jean Ludwig
TI  - Minimal ideals of group algebras
JO  - Studia Mathematica
PY  - 2004
SP  - 205
EP  - 229
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-2/
DO  - 10.4064/sm160-3-2
LA  - en
ID  - 10_4064_sm160_3_2
ER  - 
%0 Journal Article
%A David Alexander
%A Jean Ludwig
%T Minimal ideals of group algebras
%J Studia Mathematica
%D 2004
%P 205-229
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-2/
%R 10.4064/sm160-3-2
%G en
%F 10_4064_sm160_3_2
David Alexander; Jean Ludwig. Minimal ideals of group algebras. Studia Mathematica, Tome 160 (2004) no. 3, pp. 205-229. doi: 10.4064/sm160-3-2

Cité par Sources :