We first study the behavior of weights on a simply connected nilpotent Lie group $G$. Then for a subalgebra $A$ of $L^1(G)$ containing the Schwartz algebra ${\mathcal S}(G)$ as a dense subspace, we characterize all closed two-sided ideals of $A$ whose hull reduces to one point which is a character.
Keywords:
first study behavior weights simply connected nilpotent lie group subalgebra containing schwartz algebra mathcal dense subspace characterize closed two sided ideals whose hull reduces point which character
Affiliations des auteurs :
David Alexander 
1
;
Jean Ludwig 
1
1
Département de Mathématiques et d'Informatique Université de Metz Ile du Saulcy 57045 Metz Cedex 01, France
@article{10_4064_sm160_3_2,
author = {David Alexander and Jean Ludwig},
title = {Minimal ideals of group algebras},
journal = {Studia Mathematica},
pages = {205--229},
year = {2004},
volume = {160},
number = {3},
doi = {10.4064/sm160-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-2/}
}
TY - JOUR
AU - David Alexander
AU - Jean Ludwig
TI - Minimal ideals of group algebras
JO - Studia Mathematica
PY - 2004
SP - 205
EP - 229
VL - 160
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-2/
DO - 10.4064/sm160-3-2
LA - en
ID - 10_4064_sm160_3_2
ER -
%0 Journal Article
%A David Alexander
%A Jean Ludwig
%T Minimal ideals of group algebras
%J Studia Mathematica
%D 2004
%P 205-229
%V 160
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-2/
%R 10.4064/sm160-3-2
%G en
%F 10_4064_sm160_3_2
David Alexander; Jean Ludwig. Minimal ideals of group algebras. Studia Mathematica, Tome 160 (2004) no. 3, pp. 205-229. doi: 10.4064/sm160-3-2