Three-space problems and
bounded approximation properties
Studia Mathematica, Tome 159 (2003) no. 3, pp. 417-434
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $ \{ R_n \}_{n=1}^{ \infty} $ be a commuting
approximating sequence of the Banach space $X$ leaving the
closed subspace $A \subset X$ invariant. Then we prove
three-space results of the following kind:
If the operators $R_n$ induce basis projections on $X/A$, and
$X$ or $A$ is an ${\cal L}_p$-space, then both
$X $ and $A $ have bases.
We apply these results to show that the spaces $C_{ {\mit\Lambda}} =
\overline{ \hbox{span}} \{ z^k : k \in {\mit\Lambda} \} \subset C(
\mathbb T)$ and $L_{ {\mit\Lambda}} = \overline{ \hbox{span}} \{ z^k :
k \in {\mit\Lambda} \} \subset L_1( \mathbb T)$ have bases whenever $
{\mit\Lambda} \subset \mathbb Z$ and $ \mathbb Z \setminus {\mit\Lambda}$ is
a Sidon set.
Keywords:
infty commuting approximating sequence banach space leaving closed subspace subset invariant prove three space results following kind operators induce basis projections cal p space have bases apply these results spaces mit lambda overline hbox span mit lambda subset mathbb mit lambda overline hbox span mit lambda subset mathbb have bases whenever mit lambda subset mathbb mathbb setminus mit lambda sidon set
Affiliations des auteurs :
Wolfgang Lusky 1
@article{10_4064_sm159_3_6,
author = {Wolfgang Lusky},
title = {Three-space problems and
bounded approximation properties},
journal = {Studia Mathematica},
pages = {417--434},
publisher = {mathdoc},
volume = {159},
number = {3},
year = {2003},
doi = {10.4064/sm159-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-6/}
}
Wolfgang Lusky. Three-space problems and bounded approximation properties. Studia Mathematica, Tome 159 (2003) no. 3, pp. 417-434. doi: 10.4064/sm159-3-6
Cité par Sources :