Three-space problems and bounded approximation properties
Studia Mathematica, Tome 159 (2003) no. 3, pp. 417-434

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $ \{ R_n \}_{n=1}^{ \infty} $ be a commuting approximating sequence of the Banach space $X$ leaving the closed subspace $A \subset X$ invariant. Then we prove three-space results of the following kind: If the operators $R_n$ induce basis projections on $X/A$, and $X$ or $A$ is an ${\cal L}_p$-space, then both $X $ and $A $ have bases. We apply these results to show that the spaces $C_{ {\mit\Lambda}} = \overline{ \hbox{span}} \{ z^k : k \in {\mit\Lambda} \} \subset C( \mathbb T)$ and $L_{ {\mit\Lambda}} = \overline{ \hbox{span}} \{ z^k : k \in {\mit\Lambda} \} \subset L_1( \mathbb T)$ have bases whenever $ {\mit\Lambda} \subset \mathbb Z$ and $ \mathbb Z \setminus {\mit\Lambda}$ is a Sidon set.
DOI : 10.4064/sm159-3-6
Keywords: infty commuting approximating sequence banach space leaving closed subspace subset invariant prove three space results following kind operators induce basis projections cal p space have bases apply these results spaces mit lambda overline hbox span mit lambda subset mathbb mit lambda overline hbox span mit lambda subset mathbb have bases whenever mit lambda subset mathbb mathbb setminus mit lambda sidon set

Wolfgang Lusky 1

1 Institute for Mathematics University of Paderborn Warburger Str. 100 D-33098 Paderborn, Germany
@article{10_4064_sm159_3_6,
     author = {Wolfgang Lusky},
     title = {Three-space problems and
 bounded approximation properties},
     journal = {Studia Mathematica},
     pages = {417--434},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2003},
     doi = {10.4064/sm159-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-6/}
}
TY  - JOUR
AU  - Wolfgang Lusky
TI  - Three-space problems and
 bounded approximation properties
JO  - Studia Mathematica
PY  - 2003
SP  - 417
EP  - 434
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-6/
DO  - 10.4064/sm159-3-6
LA  - en
ID  - 10_4064_sm159_3_6
ER  - 
%0 Journal Article
%A Wolfgang Lusky
%T Three-space problems and
 bounded approximation properties
%J Studia Mathematica
%D 2003
%P 417-434
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-6/
%R 10.4064/sm159-3-6
%G en
%F 10_4064_sm159_3_6
Wolfgang Lusky. Three-space problems and
 bounded approximation properties. Studia Mathematica, Tome 159 (2003) no. 3, pp. 417-434. doi: 10.4064/sm159-3-6

Cité par Sources :