Reflexivity and approximate fixed points
Studia Mathematica, Tome 159 (2003) no. 3, pp. 403-415

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A Banach space $X$ is reflexive if and only if every bounded sequence $\{x_n\}$ in $X$ contains a norm attaining subsequence. This means that it contains a subsequence $\{x_{n_k}\}$ for which $\sup_{f\in S_{X^*}}\limsup_{k\to \infty} f(x_{n_k})$ is attained at some $f$ in the dual unit sphere $S_{X^*}$. A Banach space $X$ is not reflexive if and only if it contains a normalized sequence $\{x_n\}$ with the property that for every $f\in S_{X^*}$, there exists $g\in S_{X^*}$ such that $\limsup_{n\to \infty}f(x_n)\liminf_{n\to \infty}g(x_n)$. Combining this with a result of Shafrir, we conclude that every infinite-dimensional Banach space contains an unbounded closed convex set which has the approximate fixed point property for nonexpansive mappings.
DOI : 10.4064/sm159-3-5
Keywords: banach space reflexive only every bounded sequence contains norm attaining subsequence means contains subsequence which sup * limsup infty attained dual unit sphere * banach space reflexive only contains normalized sequence property every * there exists * limsup infty liminf infty combining result shafrir conclude every infinite dimensional banach space contains unbounded closed convex set which has approximate fixed point property nonexpansive mappings

Eva Matoušková 1 ; Simeon Reich 2

1 Mathematical Institute Czech Academy of Sciences Žitná 25 CZ-11567 Praha, Czech Republic
2 Department of Mathematics The Technion — Israel Institute of Technology 32000 Haifa, Israel
@article{10_4064_sm159_3_5,
     author = {Eva Matou\v{s}kov\'a and Simeon Reich},
     title = {Reflexivity and approximate fixed points},
     journal = {Studia Mathematica},
     pages = {403--415},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2003},
     doi = {10.4064/sm159-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-5/}
}
TY  - JOUR
AU  - Eva Matoušková
AU  - Simeon Reich
TI  - Reflexivity and approximate fixed points
JO  - Studia Mathematica
PY  - 2003
SP  - 403
EP  - 415
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-5/
DO  - 10.4064/sm159-3-5
LA  - en
ID  - 10_4064_sm159_3_5
ER  - 
%0 Journal Article
%A Eva Matoušková
%A Simeon Reich
%T Reflexivity and approximate fixed points
%J Studia Mathematica
%D 2003
%P 403-415
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-5/
%R 10.4064/sm159-3-5
%G en
%F 10_4064_sm159_3_5
Eva Matoušková; Simeon Reich. Reflexivity and approximate fixed points. Studia Mathematica, Tome 159 (2003) no. 3, pp. 403-415. doi: 10.4064/sm159-3-5

Cité par Sources :