Interpolation theorem for the $p$-harmonic transform
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 159 (2003) no. 3, pp. 373-390
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We establish an interpolation theorem for a class of nonlinear operators in the Lebesgue spaces 
${\scr L}^s({\mathbb R}^n)$ arising naturally in the study of elliptic PDEs. The prototype of those PDEs is the second order $p$-harmonic equation $\mathop {\rm div}\nolimits |\nabla u|^{p-2}\nabla u=\mathop {\rm div}\nolimits {{\mathfrak f}}.$ In this example the $p$-harmonic transform is essentially inverse to $\mathop {\rm div}\nolimits (|\nabla |^{p-2}\nabla ) $. To every vector field ${{\mathfrak f}} \in {\scr L}^q({ 
\mathbb R}^n,{ \mathbb R}^n)$ our operator ${\scr H}_p$ assigns the gradient of the solution, ${\scr H}_p{{\mathfrak f}}= \nabla u \in {\scr L}^p
({ \mathbb R}^n,{ \mathbb R}^n).$ The core of the matter is that we go beyond the natural domain of definition of this operator. Because of nonlinearity our arguments require substantial innovations as compared with the classical interpolation theory of Riesz, Thorin and Marcinkiewicz. The subject is largely motivated by recent developments in geometric function theory.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
establish interpolation theorem class nonlinear operators lebesgue spaces scr mathbb arising naturally study elliptic pdes prototype those pdes second order p harmonic equation mathop div nolimits nabla p nabla mathop div nolimits mathfrak example p harmonic transform essentially inverse mathop div nolimits nabla p nabla every vector field mathfrak scr mathbb mathbb operator scr assigns gradient solution scr mathfrak nabla scr mathbb mathbb core matter beyond natural domain definition operator because nonlinearity arguments require substantial innovations compared classical interpolation theory riesz thorin marcinkiewicz subject largely motivated recent developments geometric function theory
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Luigi D'Onofrio 1 ; Tadeusz Iwaniec 2
@article{10_4064_sm159_3_3,
     author = {Luigi D'Onofrio and Tadeusz Iwaniec},
     title = {Interpolation theorem for the $p$-harmonic transform},
     journal = {Studia Mathematica},
     pages = {373--390},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2003},
     doi = {10.4064/sm159-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-3/}
}
                      
                      
                    TY - JOUR AU - Luigi D'Onofrio AU - Tadeusz Iwaniec TI - Interpolation theorem for the $p$-harmonic transform JO - Studia Mathematica PY - 2003 SP - 373 EP - 390 VL - 159 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-3/ DO - 10.4064/sm159-3-3 LA - en ID - 10_4064_sm159_3_3 ER -
Luigi D'Onofrio; Tadeusz Iwaniec. Interpolation theorem for the $p$-harmonic transform. Studia Mathematica, Tome 159 (2003) no. 3, pp. 373-390. doi: 10.4064/sm159-3-3
Cité par Sources :
