Interpolation theorem for the $p$-harmonic transform
Studia Mathematica, Tome 159 (2003) no. 3, pp. 373-390

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish an interpolation theorem for a class of nonlinear operators in the Lebesgue spaces ${\scr L}^s({\mathbb R}^n)$ arising naturally in the study of elliptic PDEs. The prototype of those PDEs is the second order $p$-harmonic equation $\mathop {\rm div}\nolimits |\nabla u|^{p-2}\nabla u=\mathop {\rm div}\nolimits {{\mathfrak f}}.$ In this example the $p$-harmonic transform is essentially inverse to $\mathop {\rm div}\nolimits (|\nabla |^{p-2}\nabla ) $. To every vector field ${{\mathfrak f}} \in {\scr L}^q({ \mathbb R}^n,{ \mathbb R}^n)$ our operator ${\scr H}_p$ assigns the gradient of the solution, ${\scr H}_p{{\mathfrak f}}= \nabla u \in {\scr L}^p ({ \mathbb R}^n,{ \mathbb R}^n).$ The core of the matter is that we go beyond the natural domain of definition of this operator. Because of nonlinearity our arguments require substantial innovations as compared with the classical interpolation theory of Riesz, Thorin and Marcinkiewicz. The subject is largely motivated by recent developments in geometric function theory.
DOI : 10.4064/sm159-3-3
Keywords: establish interpolation theorem class nonlinear operators lebesgue spaces scr mathbb arising naturally study elliptic pdes prototype those pdes second order p harmonic equation mathop div nolimits nabla p nabla mathop div nolimits mathfrak example p harmonic transform essentially inverse mathop div nolimits nabla p nabla every vector field mathfrak scr mathbb mathbb operator scr assigns gradient solution scr mathfrak nabla scr mathbb mathbb core matter beyond natural domain definition operator because nonlinearity arguments require substantial innovations compared classical interpolation theory riesz thorin marcinkiewicz subject largely motivated recent developments geometric function theory

Luigi D'Onofrio 1 ; Tadeusz Iwaniec 2

1 Dipartimento di Matematica e Applicazioni “R. Caccioppoli” Complesso Universitario Monte S. Angelo 80126, Napoli, Italy
2 Department of Mathematics Syracuse University Syracuse, NY 13244, U.S.A.
@article{10_4064_sm159_3_3,
     author = {Luigi D'Onofrio and Tadeusz Iwaniec},
     title = {Interpolation theorem for the $p$-harmonic transform},
     journal = {Studia Mathematica},
     pages = {373--390},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2003},
     doi = {10.4064/sm159-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-3/}
}
TY  - JOUR
AU  - Luigi D'Onofrio
AU  - Tadeusz Iwaniec
TI  - Interpolation theorem for the $p$-harmonic transform
JO  - Studia Mathematica
PY  - 2003
SP  - 373
EP  - 390
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-3/
DO  - 10.4064/sm159-3-3
LA  - en
ID  - 10_4064_sm159_3_3
ER  - 
%0 Journal Article
%A Luigi D'Onofrio
%A Tadeusz Iwaniec
%T Interpolation theorem for the $p$-harmonic transform
%J Studia Mathematica
%D 2003
%P 373-390
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-3/
%R 10.4064/sm159-3-3
%G en
%F 10_4064_sm159_3_3
Luigi D'Onofrio; Tadeusz Iwaniec. Interpolation theorem for the $p$-harmonic transform. Studia Mathematica, Tome 159 (2003) no. 3, pp. 373-390. doi: 10.4064/sm159-3-3

Cité par Sources :