The Banach lattice $C[0,1]$ is super $d$-rigid
Studia Mathematica, Tome 159 (2003) no. 3, pp. 337-355
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The following properties of $C[0,1]$ are proved here. Let $T:C[0,1] \to Y$ be a disjointness preserving bijection onto an arbitrary vector lattice $Y$. Then the inverse operator $T^{-1}$ is also disjointness preserving$,$ the operator $T$ is regular$,$ and the vector lattice $Y$ is order isomorphic to $C[0,1]$. In particular if $Y$ is a normed lattice$,$ then $T$ is also automatically norm continuous. A major step needed for proving these properties is provided by Theorem 3.1 asserting that $T$ satisfies some technical condition that is crucial in the study of operators preserving disjointness.
Keywords:
following properties proved here disjointness preserving bijection arbitrary vector lattice inverse operator disjointness preserving operator regular vector lattice order isomorphic particular normed lattice automatically norm continuous major step needed proving these properties provided theorem asserting satisfies technical condition crucial study operators preserving disjointness
Affiliations des auteurs :
Y. A. Abramovich 1 ; A. K. Kitover 2
@article{10_4064_sm159_3_1,
author = {Y. A. Abramovich and A. K. Kitover},
title = {The {Banach} lattice $C[0,1]$ is super $d$-rigid},
journal = {Studia Mathematica},
pages = {337--355},
publisher = {mathdoc},
volume = {159},
number = {3},
year = {2003},
doi = {10.4064/sm159-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-1/}
}
TY - JOUR AU - Y. A. Abramovich AU - A. K. Kitover TI - The Banach lattice $C[0,1]$ is super $d$-rigid JO - Studia Mathematica PY - 2003 SP - 337 EP - 355 VL - 159 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-1/ DO - 10.4064/sm159-3-1 LA - en ID - 10_4064_sm159_3_1 ER -
Y. A. Abramovich; A. K. Kitover. The Banach lattice $C[0,1]$ is super $d$-rigid. Studia Mathematica, Tome 159 (2003) no. 3, pp. 337-355. doi: 10.4064/sm159-3-1
Cité par Sources :