The Banach lattice $C[0,1]$ is super $d$-rigid
Studia Mathematica, Tome 159 (2003) no. 3, pp. 337-355

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The following properties of $C[0,1]$ are proved here. Let $T:C[0,1] \to Y$ be a disjointness preserving bijection onto an arbitrary vector lattice $Y$. Then the inverse operator $T^{-1}$ is also disjointness preserving$,$ the operator $T$ is regular$,$ and the vector lattice $Y$ is order isomorphic to $C[0,1]$. In particular if $Y$ is a normed lattice$,$ then $T$ is also automatically norm continuous. A major step needed for proving these properties is provided by Theorem 3.1 asserting that $T$ satisfies some technical condition that is crucial in the study of operators preserving disjointness.
DOI : 10.4064/sm159-3-1
Keywords: following properties proved here disjointness preserving bijection arbitrary vector lattice inverse operator disjointness preserving operator regular vector lattice order isomorphic particular normed lattice automatically norm continuous major step needed proving these properties provided theorem asserting satisfies technical condition crucial study operators preserving disjointness

Y. A. Abramovich 1 ; A. K. Kitover 2

1 Department of Mathematical Sciences IUPUI Indianapolis, IN 46202, U.S.A.
2 Department of Mathematics Community College of Philadelphia 1700 Spring Garden Street Philadelphia, PA 19130, U.S.A.
@article{10_4064_sm159_3_1,
     author = {Y. A. Abramovich and A. K. Kitover},
     title = {The {Banach} lattice $C[0,1]$ is super $d$-rigid},
     journal = {Studia Mathematica},
     pages = {337--355},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2003},
     doi = {10.4064/sm159-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-1/}
}
TY  - JOUR
AU  - Y. A. Abramovich
AU  - A. K. Kitover
TI  - The Banach lattice $C[0,1]$ is super $d$-rigid
JO  - Studia Mathematica
PY  - 2003
SP  - 337
EP  - 355
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-1/
DO  - 10.4064/sm159-3-1
LA  - en
ID  - 10_4064_sm159_3_1
ER  - 
%0 Journal Article
%A Y. A. Abramovich
%A A. K. Kitover
%T The Banach lattice $C[0,1]$ is super $d$-rigid
%J Studia Mathematica
%D 2003
%P 337-355
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-1/
%R 10.4064/sm159-3-1
%G en
%F 10_4064_sm159_3_1
Y. A. Abramovich; A. K. Kitover. The Banach lattice $C[0,1]$ is super $d$-rigid. Studia Mathematica, Tome 159 (2003) no. 3, pp. 337-355. doi: 10.4064/sm159-3-1

Cité par Sources :