Convergence of greedy approximation II.
The trigonometric system
Studia Mathematica, Tome 159 (2003) no. 2, pp. 161-184
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the following nonlinear method of approximation by
trigonometric polynomials. For a periodic function
$f$ we take as an approximant a trigonometric polynomial of the
form $G_m(f) := \sum_{k \in {\mit\Lambda}} \,\widehat{\! f}(k) e^{i(k,x)} $, where
${\mit\Lambda} \subset {\mathbb Z}^d$ is a set of cardinality $m$ containing the
indices of the $m$ largest (in absolute value) Fourier
coefficients $\,\widehat{\! f}(k)$ of the function $f$. Note that $G_m(f)$
gives the best $m$-term approximant in the $L_2$-norm, and
therefore, for each $f\in L_2$, $\|f-G_m(f)\|_2 \to 0$ as $m\to
\infty$. It is known from previous results that in the case of
$p\neq 2$ the condition $f\in L_p$ does not guarantee the
convergence $\|f-G_m(f)\|_p \to 0$ as $m\to \infty$. We study
the following question. What conditions (in addition to $f\in
L_p$) provide the convergence $\|f-G_m(f)\|_p \to 0$ as $m\to
\infty$? In the case $2 p\le \infty$ we find necessary and
sufficient conditions on a decreasing sequence
$\{A_n\}_{n=1}^\infty$ to guarantee the $L_p$-convergence of
$\{G_m(f)\}$ for all $f\in L_p$ satisfying $a_n(f)\le A_n$,
where $\{a_n(f)\}$ is the decreasing rearrangement of the absolute
values of the Fourier coefficients of $f$.
Keywords:
study following nonlinear method approximation trigonometric polynomials periodic function approximant trigonometric polynomial form sum mit lambda widehat where mit lambda subset mathbb set cardinality containing indices largest absolute value fourier coefficients widehat function note gives best m term approximant norm therefore each f g infty known previous results neq condition does guarantee convergence f g infty study following question what conditions addition provide convergence f g infty infty necessary sufficient conditions decreasing sequence infty guarantee p convergence satisfying where decreasing rearrangement absolute values fourier coefficients
Affiliations des auteurs :
S. V. Konyagin 1 ; V. N. Temlyakov 2
@article{10_4064_sm159_2_1,
author = {S. V. Konyagin and V. N. Temlyakov},
title = {Convergence of greedy approximation {II.
} {The} trigonometric system},
journal = {Studia Mathematica},
pages = {161--184},
publisher = {mathdoc},
volume = {159},
number = {2},
year = {2003},
doi = {10.4064/sm159-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-1/}
}
TY - JOUR AU - S. V. Konyagin AU - V. N. Temlyakov TI - Convergence of greedy approximation II. The trigonometric system JO - Studia Mathematica PY - 2003 SP - 161 EP - 184 VL - 159 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-1/ DO - 10.4064/sm159-2-1 LA - en ID - 10_4064_sm159_2_1 ER -
S. V. Konyagin; V. N. Temlyakov. Convergence of greedy approximation II. The trigonometric system. Studia Mathematica, Tome 159 (2003) no. 2, pp. 161-184. doi: 10.4064/sm159-2-1
Cité par Sources :