We study Palamodov's derived projective limit functor $\mathop {\rm Proj}^1$ for projective spectra consisting of webbed locally convex spaces introduced by Wilde. This class contains almost all locally convex spaces appearing in analysis. We provide a natural characterization for the vanishing of $\mathop {\rm Proj}^1$ which generalizes and unifies results of Palamodov and Retakh for spectra of Fréchet and (LB)-spaces. We thus obtain a general tool for solving surjectivity problems in analysis.
@article{10_4064_sm158_2_2,
author = {L. Frerick and D. Kunkle and J. Wengenroth},
title = {The projective limit functor for spectra of webbed spaces},
journal = {Studia Mathematica},
pages = {117--129},
year = {2003},
volume = {158},
number = {2},
doi = {10.4064/sm158-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-2-2/}
}
TY - JOUR
AU - L. Frerick
AU - D. Kunkle
AU - J. Wengenroth
TI - The projective limit functor for spectra of webbed spaces
JO - Studia Mathematica
PY - 2003
SP - 117
EP - 129
VL - 158
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm158-2-2/
DO - 10.4064/sm158-2-2
LA - en
ID - 10_4064_sm158_2_2
ER -
%0 Journal Article
%A L. Frerick
%A D. Kunkle
%A J. Wengenroth
%T The projective limit functor for spectra of webbed spaces
%J Studia Mathematica
%D 2003
%P 117-129
%V 158
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm158-2-2/
%R 10.4064/sm158-2-2
%G en
%F 10_4064_sm158_2_2
L. Frerick; D. Kunkle; J. Wengenroth. The projective limit functor for spectra of webbed spaces. Studia Mathematica, Tome 158 (2003) no. 2, pp. 117-129. doi: 10.4064/sm158-2-2