Distortion and spreading models
in modified mixed Tsirelson spaces
Studia Mathematica, Tome 157 (2003) no. 3, pp. 199-236
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The results of the first part concern the existence of higher
order $\ell_{1}$ spreading models in asymptotic $\ell_{1}$ Banach
spaces. We sketch the proof of the fact that the mixed Tsirelson
space $T[({\cal S}_{n},\theta_{n})_{n}]$,
$\theta_{n+m}\geq\theta_{n}\theta_{m}$ and
$\lim_{n}\theta_{n}^{1/n}=1$, admits an $\ell_{1}^{\omega}$
spreading model in every block subspace.
We also prove that if $X$
is a Banach space with a basis, with the property that there
exists a sequence $(\theta_{n})_{n}\subset (0,1)$ with
$\lim_{n}\theta_{n}^{1/n}=1$, such that, for every
$n\in{\Bbb N}$, $\Vert \sum_{k=1}^{m} x_{k}\Vert \geq
\theta_{n}\sum_{k=1}^{m}\Vert x_{k}\Vert$ for every
${\cal S}_{n}$-admissible block sequence
$(x_{k})_{k=1}^{m}$ of vectors in $X$, then there exists $c>0$ such that
every block subspace of $X$ admits, for every $n$, an
$\ell_{1}^{n}$ spreading model with constant $c$.
Finally, we give
an example of a Banach space which has the above property but
fails to admit an $\ell_{1}^{\omega}$ spreading model.In the second part we prove that under certain conditions on
the double sequence
$(k_{n},\theta_{n})_{n}$ the modified mixed
Tsirelson space $T_{M}[({\cal S}_{k_{n}},\theta_{n})_{n}]$ is
arbitrarily distortable.
Moreover, for an appropriate choice of $(k_{n},\theta_{n})_{n}$,
every block subspace admits an $\ell_{1}^{\omega}$ spreading
model.
Keywords:
results first part concern existence higher order ell spreading models asymptotic ell banach spaces sketch proof the mixed tsirelson space cal theta theta geq theta theta lim theta admits ell omega spreading model every block subspace prove banach space basis property there exists sequence theta subset lim theta every bbb vert sum vert geq theta sum vert vert every cal admissible block sequence vectors there exists every block subspace admits every ell spreading model constant nbsp finally example banach space which has above property fails admit ell omega spreading model second part prove under certain conditions double sequence theta modified mixed tsirelson space cal theta arbitrarily distortable moreover appropriate choice theta every block subspace admits ell omega spreading model
Affiliations des auteurs :
S. A. Argyros 1 ; I. Deliyanni 2 ; A. Manoussakis 3
@article{10_4064_sm157_3_1,
author = {S. A. Argyros and I. Deliyanni and A. Manoussakis},
title = {Distortion and spreading models
in modified mixed {Tsirelson} spaces},
journal = {Studia Mathematica},
pages = {199--236},
publisher = {mathdoc},
volume = {157},
number = {3},
year = {2003},
doi = {10.4064/sm157-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-3-1/}
}
TY - JOUR AU - S. A. Argyros AU - I. Deliyanni AU - A. Manoussakis TI - Distortion and spreading models in modified mixed Tsirelson spaces JO - Studia Mathematica PY - 2003 SP - 199 EP - 236 VL - 157 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm157-3-1/ DO - 10.4064/sm157-3-1 LA - en ID - 10_4064_sm157_3_1 ER -
%0 Journal Article %A S. A. Argyros %A I. Deliyanni %A A. Manoussakis %T Distortion and spreading models in modified mixed Tsirelson spaces %J Studia Mathematica %D 2003 %P 199-236 %V 157 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm157-3-1/ %R 10.4064/sm157-3-1 %G en %F 10_4064_sm157_3_1
S. A. Argyros; I. Deliyanni; A. Manoussakis. Distortion and spreading models in modified mixed Tsirelson spaces. Studia Mathematica, Tome 157 (2003) no. 3, pp. 199-236. doi: 10.4064/sm157-3-1
Cité par Sources :