Decomposition systems for function spaces
Studia Mathematica, Tome 157 (2003) no. 2, pp. 133-169

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\mit\Theta}:=\{\theta_I^e: e\in E,\, I\in D\}$ be a decomposition system for $L_2({\mathbb R}^d)$ indexed over $D$, the set of dyadic cubes in ${\mathbb R}^d$, and a finite set $E$, and let $\widetilde{\mit\Theta}:=\{\widetilde\theta^e_I: e\in E,\, I\in D\}$ be the corresponding dual functionals. That is, for every $f\in L_2({\mathbb R}^d)$, $f=\sum_{e\in E}\sum_{I\in D}\def\inpro#1#2{\langle#1,#2\rangle} \inpro{f}{\widetilde\theta^e_I}\theta_I^e$. We study sufficient conditions on ${\mit\Theta},\widetilde{\mit\Theta}$ so that they constitute a decomposition system for Triebel–Lizorkin and Besov spaces. Moreover, these conditions allow us to characterize the membership of a distribution $f$ in these spaces by the size of the coefficients $\def\inpro#1#2{\langle#1,#2\rangle}\inpro{f}{\widetilde\theta^e_I}$, $e\in E$, $I\in D$. Typical examples of such decomposition systems are various wavelet-type unconditional bases for $L_2({\mathbb R}^d)$, and more general systems such as affine frames.
DOI : 10.4064/sm157-2-3
Keywords: mit theta theta decomposition system mathbb indexed set dyadic cubes mathbb finite set widetilde mit theta widetilde theta corresponding dual functionals every mathbb sum sum def inpro langle rangle inpro widetilde theta theta study sufficient conditions mit theta widetilde mit theta constitute decomposition system triebel lizorkin besov spaces moreover these conditions allow characterize membership distribution these spaces size coefficients def inpro langle rangle inpro widetilde theta typical examples decomposition systems various wavelet type unconditional bases mathbb general systems affine frames

G. Kyriazis 1

1 Department of Mathematics and Statistics University of Cyprus P.O. Box 20537 1678 Nicosia, Cyprus
@article{10_4064_sm157_2_3,
     author = {G. Kyriazis},
     title = {Decomposition systems for function spaces},
     journal = {Studia Mathematica},
     pages = {133--169},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {2003},
     doi = {10.4064/sm157-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-2-3/}
}
TY  - JOUR
AU  - G. Kyriazis
TI  - Decomposition systems for function spaces
JO  - Studia Mathematica
PY  - 2003
SP  - 133
EP  - 169
VL  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm157-2-3/
DO  - 10.4064/sm157-2-3
LA  - en
ID  - 10_4064_sm157_2_3
ER  - 
%0 Journal Article
%A G. Kyriazis
%T Decomposition systems for function spaces
%J Studia Mathematica
%D 2003
%P 133-169
%V 157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm157-2-3/
%R 10.4064/sm157-2-3
%G en
%F 10_4064_sm157_2_3
G. Kyriazis. Decomposition systems for function spaces. Studia Mathematica, Tome 157 (2003) no. 2, pp. 133-169. doi: 10.4064/sm157-2-3

Cité par Sources :