Decomposition systems for function spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 157 (2003) no. 2, pp. 133-169
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              
Let  ${\mit\Theta}:=\{\theta_I^e: e\in E,\, I\in D\}$ be  a decomposition
system for  $L_2({\mathbb R}^d)$ indexed over  $D$, the set of dyadic cubes in
${\mathbb R}^d$, and a finite set  $E$, and let  $\widetilde{\mit\Theta}:=\{\widetilde\theta^e_I:
e\in E,\, I\in D\}$ be the corresponding dual functionals.  That
is,  for every  $f\in L_2({\mathbb R}^d)$,  $f=\sum_{e\in E}\sum_{I\in
D}\def\inpro#1#2{\langle#1,#2\rangle}
\inpro{f}{\widetilde\theta^e_I}\theta_I^e$. We study sufficient conditions on
${\mit\Theta},\widetilde{\mit\Theta}$ so that they constitute a decomposition
system  for Triebel–Lizorkin and Besov spaces.  Moreover,
these conditions  allow us to  characterize the membership of a
distribution  $f$ in these spaces by the size of the coefficients
$\def\inpro#1#2{\langle#1,#2\rangle}\inpro{f}{\widetilde\theta^e_I}$,  $e\in E$,  $I\in D$. Typical examples of such
decomposition systems are various wavelet-type unconditional
bases for  $L_2({\mathbb R}^d)$, and more general systems such as  affine
frames. 
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
mit theta theta decomposition system mathbb indexed set dyadic cubes mathbb finite set widetilde mit theta widetilde theta corresponding dual functionals every mathbb sum sum def inpro langle rangle inpro widetilde theta theta study sufficient conditions mit theta widetilde mit theta constitute decomposition system triebel lizorkin besov spaces moreover these conditions allow characterize membership distribution these spaces size coefficients def inpro langle rangle inpro widetilde theta typical examples decomposition systems various wavelet type unconditional bases mathbb general systems affine frames
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              G. Kyriazis 1
@article{10_4064_sm157_2_3,
     author = {G. Kyriazis},
     title = {Decomposition systems for function spaces},
     journal = {Studia Mathematica},
     pages = {133--169},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {2003},
     doi = {10.4064/sm157-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-2-3/}
}
                      
                      
                    G. Kyriazis. Decomposition systems for function spaces. Studia Mathematica, Tome 157 (2003) no. 2, pp. 133-169. doi: 10.4064/sm157-2-3
Cité par Sources :