On the Kunen–Shelah properties in Banach spaces
Studia Mathematica, Tome 157 (2003) no. 2, pp. 97-120
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce and study the Kunen–Shelah
properties ${\rm KS}_i$, $ i=0,1,\ldots ,7$. Let us highlight
some of our results for a Banach space $X$: (1) $X^*$ has a
$w^*$-nonseparable equivalent dual ball iff $X$ has an
$\omega$-polyhedron (i.e., a bounded family $\{x_i\}_{i \omega}$ such
that $x_j\not\in \overline{\rm co} (\{x_i :i\in \omega\setminus \{j\}\})$ for every
$j\in \omega$) iff $X$ has an uncountable bounded almost
biorthogonal system (UBABS) of type $\eta$ for some $\eta\in
[0,1)$ (i.e., a bounded family
$\{(x_{\alpha},f_{\alpha})\}_{1\leq \alpha
\omega}\subset X\times X^*$ such that
$f_{\alpha}(x_{\alpha})=1$ and $|f_{\alpha}(x_{\beta})|\leq\eta$ if
$\alpha\neq\beta$); (2) if $X$ has an uncountable
$\omega$-independent system then $X$ has an UBABS of type $\eta$
for every $\eta \in (0,1)$; (3) if $X$ does not have the property
(C) of Corson, then $X$ has an $\omega$-polyhedron; (4) $X$
has no $\omega$-polyhedron iff $X$ has no convex
right-separated $\omega$-family (i.e., a bounded family
$\{x_i\}_{i \omega}$ such that $x_j\not\in \overline{\rm co} (\{x_i: j i \omega\})$
for every $j\in \omega$) iff every $w^*$-closed convex subset
of $X^*$ is $w^*$-separable iff every convex subset of
$X^*$ is $w^*$-separable iff $\mu (X)=1$,
$\mu (X)$ being the Finet–Godefroy index of $X$ (see [1]).
Keywords:
introduce study kunen shelah properties ldots highlight results banach space nbsp * has * nonseparable equivalent dual ball has omega polyhedron bounded family omega overline omega setminus every omega has uncountable bounded almost biorthogonal system ubabs type eta eta bounded family alpha alpha leq alpha omega subset times * alpha alpha alpha beta leq eta alpha neq beta nbsp nbsp has uncountable omega independent system has ubabs type eta every eta nbsp does have property corson has omega polyhedron nbsp has omega polyhedron has convex right separated omega family bounded family omega overline omega every omega every * closed convex subset * * separable every convex subset * * separable being finet godefroy index see nbsp
Affiliations des auteurs :
Antonio S. Granero 1 ; Mar Jiménez 1 ; Alejandro Montesinos 1 ; José P. Moreno 2 ; Anatolij Plichko 3
@article{10_4064_sm157_2_1,
author = {Antonio S. Granero and Mar Jim\'enez and Alejandro Montesinos and Jos\'e P. Moreno and Anatolij Plichko},
title = {On the {Kunen{\textendash}Shelah} properties in {Banach} spaces},
journal = {Studia Mathematica},
pages = {97--120},
publisher = {mathdoc},
volume = {157},
number = {2},
year = {2003},
doi = {10.4064/sm157-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-2-1/}
}
TY - JOUR AU - Antonio S. Granero AU - Mar Jiménez AU - Alejandro Montesinos AU - José P. Moreno AU - Anatolij Plichko TI - On the Kunen–Shelah properties in Banach spaces JO - Studia Mathematica PY - 2003 SP - 97 EP - 120 VL - 157 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm157-2-1/ DO - 10.4064/sm157-2-1 LA - en ID - 10_4064_sm157_2_1 ER -
%0 Journal Article %A Antonio S. Granero %A Mar Jiménez %A Alejandro Montesinos %A José P. Moreno %A Anatolij Plichko %T On the Kunen–Shelah properties in Banach spaces %J Studia Mathematica %D 2003 %P 97-120 %V 157 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm157-2-1/ %R 10.4064/sm157-2-1 %G en %F 10_4064_sm157_2_1
Antonio S. Granero; Mar Jiménez; Alejandro Montesinos; José P. Moreno; Anatolij Plichko. On the Kunen–Shelah properties in Banach spaces. Studia Mathematica, Tome 157 (2003) no. 2, pp. 97-120. doi: 10.4064/sm157-2-1
Cité par Sources :