Boundedness of commutators of strongly singular
convolution operators on Herz-type spaces
Studia Mathematica, Tome 157 (2003) no. 1, pp. 33-46
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The author investigates the boundedness of the higher order commutator of
strongly singular convolution operator, $T^m_b$, on Herz spaces $\dot {K}^{\alpha ,p}_q({{\mathbb R}}^n)$ and $K^{\alpha ,p}_q({{\mathbb R}}^n)$, and on a new class of Herz-type Hardy spaces $H\dot {K}^{\alpha ,p,0}_{q,b,m}({{\mathbb R}}^n)$ and $HK^{\alpha ,p,0}_{q,b,m}({{\mathbb R}}^n)$, where $0 p\leq
1 q \infty $, $\alpha =n(1-1/q)$ and $b\in {\rm BMO}({{\mathbb R}}^n)$.
Keywords:
author investigates boundedness higher order commutator strongly singular convolution operator herz spaces dot alpha mathbb alpha mathbb class herz type hardy spaces dot alpha mathbb alpha mathbb where leq infty alpha bmo mathbb
Affiliations des auteurs :
Zongguang Liu 1
@article{10_4064_sm157_1_3,
author = {Zongguang Liu},
title = {Boundedness of commutators of strongly singular
convolution operators on {Herz-type} spaces},
journal = {Studia Mathematica},
pages = {33--46},
publisher = {mathdoc},
volume = {157},
number = {1},
year = {2003},
doi = {10.4064/sm157-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-3/}
}
TY - JOUR AU - Zongguang Liu TI - Boundedness of commutators of strongly singular convolution operators on Herz-type spaces JO - Studia Mathematica PY - 2003 SP - 33 EP - 46 VL - 157 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-3/ DO - 10.4064/sm157-1-3 LA - en ID - 10_4064_sm157_1_3 ER -
Zongguang Liu. Boundedness of commutators of strongly singular convolution operators on Herz-type spaces. Studia Mathematica, Tome 157 (2003) no. 1, pp. 33-46. doi: 10.4064/sm157-1-3
Cité par Sources :