A spectral mapping theorem for Banach modules
Studia Mathematica, Tome 156 (2003) no. 2, pp. 99-103

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a locally compact abelian group, $M(G)$ the convolution measure algebra, and $X$ a Banach $M(G)$-module under the module multiplication $\mu \circ x$, $\mu \in M(G)$, $x \in X$. We show that if $X$ is an essential $L^{1}(G)$-module, then $\sigma (T_{\mu })=\overline {\widehat {\mu }(\mathop{\rm sp}(X))} $ for each measure $\mu $ in $\mathop{\rm reg}\nolimits(M(G))$, where $T_{\mu }$ denotes the operator in $B(X)$ defined by $T_{\mu }x = \mu \circ x$, $\sigma ( \cdot )$ the usual spectrum in $B(X)$, $\mathop{\rm sp}(X)$ the hull in $L^{1}(G)$ of the ideal $I_{X }= \{f \in L^{1}(G) \mid T_{f }= 0\}$, $\widehat {\mu }$ the Fourier–Stieltjes transform of $\mu$, and $\mathop{\rm reg}\nolimits(M(G))$ the largest closed regular subalgebra of $M(G)$; $\mathop{\rm reg}\nolimits(M(G))$ contains all the absolutely continuous measures and discrete measures.
DOI : 10.4064/sm156-2-1
Keywords: locally compact abelian group convolution measure algebra banach module under module multiplication circ essential module sigma overline widehat mathop each measure mathop reg nolimits where denotes operator defined circ sigma cdot usual spectrum mathop hull ideal mid widehat fourier stieltjes transform mathop reg nolimits largest closed regular subalgebra mathop reg nolimits contains absolutely continuous measures discrete measures

H. Seferoğlu 1

1 Department of Mathematics Faculty of Art and Science Yüzüncü Yil University 65080 Van, Turkey
@article{10_4064_sm156_2_1,
     author = {H. Sefero\u{g}lu},
     title = {A spectral mapping theorem for {Banach} modules},
     journal = {Studia Mathematica},
     pages = {99--103},
     publisher = {mathdoc},
     volume = {156},
     number = {2},
     year = {2003},
     doi = {10.4064/sm156-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-1/}
}
TY  - JOUR
AU  - H. Seferoğlu
TI  - A spectral mapping theorem for Banach modules
JO  - Studia Mathematica
PY  - 2003
SP  - 99
EP  - 103
VL  - 156
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-1/
DO  - 10.4064/sm156-2-1
LA  - en
ID  - 10_4064_sm156_2_1
ER  - 
%0 Journal Article
%A H. Seferoğlu
%T A spectral mapping theorem for Banach modules
%J Studia Mathematica
%D 2003
%P 99-103
%V 156
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-1/
%R 10.4064/sm156-2-1
%G en
%F 10_4064_sm156_2_1
H. Seferoğlu. A spectral mapping theorem for Banach modules. Studia Mathematica, Tome 156 (2003) no. 2, pp. 99-103. doi: 10.4064/sm156-2-1

Cité par Sources :