Some new spaces of Besov and Triebel–Lizorkin type
on homogeneous spaces
Studia Mathematica, Tome 156 (2003) no. 1, pp. 67-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
New norms for some distributions on spaces of homogeneous type which include some fractals are introduced. Using inhomogeneous discrete Calderón reproducing formulae and the Plancherel–Pólya inequalities on spaces of homogeneous type, the authors prove that these norms give a new characterization for the Besov and Triebel–Lizorkin spaces with $p, q>1$ and can be used to introduce new inhomogeneous Besov and Triebel–Lizorkin spaces with $p, q\le 1$ on spaces of homogeneous type. Moreover, atomic decompositions of these new spaces are also obtained. All the results of this paper are new even for ${\mathbb R}^n$.
Keywords:
norms distributions spaces homogeneous type which include fractals introduced using inhomogeneous discrete calder reproducing formulae plancherel lya inequalities spaces homogeneous type authors prove these norms characterization besov triebel lizorkin spaces introduce inhomogeneous besov triebel lizorkin spaces spaces homogeneous type moreover atomic decompositions these spaces obtained results paper even mathbb
Affiliations des auteurs :
Yongsheng Han 1 ; Dachun Yang 2
@article{10_4064_sm156_1_5,
author = {Yongsheng Han and Dachun Yang},
title = {Some new spaces of {Besov} and {Triebel{\textendash}Lizorkin} type
on homogeneous spaces},
journal = {Studia Mathematica},
pages = {67--97},
publisher = {mathdoc},
volume = {156},
number = {1},
year = {2003},
doi = {10.4064/sm156-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-1-5/}
}
TY - JOUR AU - Yongsheng Han AU - Dachun Yang TI - Some new spaces of Besov and Triebel–Lizorkin type on homogeneous spaces JO - Studia Mathematica PY - 2003 SP - 67 EP - 97 VL - 156 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm156-1-5/ DO - 10.4064/sm156-1-5 LA - en ID - 10_4064_sm156_1_5 ER -
Yongsheng Han; Dachun Yang. Some new spaces of Besov and Triebel–Lizorkin type on homogeneous spaces. Studia Mathematica, Tome 156 (2003) no. 1, pp. 67-97. doi: 10.4064/sm156-1-5
Cité par Sources :