Operator Figà-Talamanca–Herz algebras
Studia Mathematica, Tome 155 (2003) no. 2, pp. 153-170

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a locally compact group. We use the canonical operator space structure on the spaces $L^p(G)$ for $p \in [1,\infty]$ introduced by G. Pisier to define operator space analogues $OA_p(G)$ of the classical Figà-Talamanca–Herz algebras $A_p(G)$. If $p \in (1,\infty)$ is arbitrary, then $A_p(G) \subset OA_p(G)$ and the inclusion is a contraction; if $p = 2$, then $OA_2(G) \cong A(G)$ as Banach spaces, but not necessarily as operator spaces. We show that $OA_p(G)$ is a completely contractive Banach algebra for each $p \in (1,\infty)$, and that $OA_q(G) \subset OA_p(G)$ completely contractively for amenable $G$ if $1 p \leq q \leq 2$ or $2 \leq q \leq p \infty$. Finally, we characterize the amenability of $G$ through the existence of a bounded approximate identity in $OA_p(G)$ for one (or equivalently for all) $p \in (1,\infty)$.
DOI : 10.4064/sm155-2-5
Mots-clés : locally compact group canonical operator space structure spaces infty introduced pisier define operator space analogues classical fig talamanca herz algebras infty arbitrary subset inclusion contraction cong banach spaces necessarily operator spaces completely contractive banach algebra each infty subset completely contractively amenable leq leq leq leq infty finally characterize amenability through existence bounded approximate identity equivalently infty

Volker Runde 1

1 Department of Mathematical and Statistical Sciences University of Alberta Edmonton, Alberta Canada, T6G 2G1
@article{10_4064_sm155_2_5,
     author = {Volker Runde},
     title = {Operator {Fig\`a-Talamanca{\textendash}Herz} algebras},
     journal = {Studia Mathematica},
     pages = {153--170},
     publisher = {mathdoc},
     volume = {155},
     number = {2},
     year = {2003},
     doi = {10.4064/sm155-2-5},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-5/}
}
TY  - JOUR
AU  - Volker Runde
TI  - Operator Figà-Talamanca–Herz algebras
JO  - Studia Mathematica
PY  - 2003
SP  - 153
EP  - 170
VL  - 155
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-5/
DO  - 10.4064/sm155-2-5
LA  - de
ID  - 10_4064_sm155_2_5
ER  - 
%0 Journal Article
%A Volker Runde
%T Operator Figà-Talamanca–Herz algebras
%J Studia Mathematica
%D 2003
%P 153-170
%V 155
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-5/
%R 10.4064/sm155-2-5
%G de
%F 10_4064_sm155_2_5
Volker Runde. Operator Figà-Talamanca–Herz algebras. Studia Mathematica, Tome 155 (2003) no. 2, pp. 153-170. doi: 10.4064/sm155-2-5

Cité par Sources :