Operator Figà-Talamanca–Herz algebras
Studia Mathematica, Tome 155 (2003) no. 2, pp. 153-170
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a locally compact group. We use the canonical operator space structure on the spaces $L^p(G)$ for $p \in [1,\infty]$ introduced by G. Pisier to define
operator space analogues $OA_p(G)$ of the classical Figà-Talamanca–Herz algebras $A_p(G)$. If $p \in (1,\infty)$ is arbitrary, then $A_p(G) \subset OA_p(G)$ and
the inclusion is a contraction; if $p = 2$, then $OA_2(G) \cong A(G)$ as Banach spaces, but not necessarily as operator spaces.
We show that $OA_p(G)$ is a completely contractive Banach algebra for each $p \in (1,\infty)$, and that $OA_q(G) \subset OA_p(G)$ completely contractively for amenable $G$
if $1 p \leq q \leq 2$ or $2 \leq q \leq p \infty$. Finally, we characterize the amenability of $G$ through the existence of a bounded approximate identity in $OA_p(G)$ for
one (or equivalently for all) $p \in (1,\infty)$.
Mots-clés :
locally compact group canonical operator space structure spaces infty introduced pisier define operator space analogues classical fig talamanca herz algebras infty arbitrary subset inclusion contraction cong banach spaces necessarily operator spaces completely contractive banach algebra each infty subset completely contractively amenable leq leq leq leq infty finally characterize amenability through existence bounded approximate identity equivalently infty
Affiliations des auteurs :
Volker Runde 1
@article{10_4064_sm155_2_5,
author = {Volker Runde},
title = {Operator {Fig\`a-Talamanca{\textendash}Herz} algebras},
journal = {Studia Mathematica},
pages = {153--170},
publisher = {mathdoc},
volume = {155},
number = {2},
year = {2003},
doi = {10.4064/sm155-2-5},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-5/}
}
Volker Runde. Operator Figà-Talamanca–Herz algebras. Studia Mathematica, Tome 155 (2003) no. 2, pp. 153-170. doi: 10.4064/sm155-2-5
Cité par Sources :