On the Hausdorff dimension of certain self-affine sets
Studia Mathematica, Tome 152 (2002) no. 2, pp. 105-124
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A subset $E$ of ${\mathbb R}^n$ is called self-affine with
respect to a collection $\{\phi _1 , \ldots ,\phi _t\}$ of affinities if
$E$ is the union of the sets $\phi _1(E), \dots, \phi _t(E)$. For $S
\subset {\mathbb R}^n$ let ${\mit\Phi} (S) = \bigcup _{1\leq j \leq t }
\phi _j (S)$. If ${\mit\Phi} (S) \subset S$ let $E_{{\mit\Phi}}(S)$ denote
$\bigcap _{k\geq 0}{\mit\Phi} ^k(S)$. For given ${\mit\Phi}$
consisting of contracting “pseudo-dilations”
(affinities which preserve the directions of the coordinate axes)
and subject to further mild technical restrictions we show that
there exist self-affine sets $E_{{\mit\Phi}}(S)$ of each
Hausdorff dimension between zero and a positive number depending
on ${\mit\Phi}$. We also investigate in detail the special class
of cases in ${\mathbb R }^2$, where the images of a fixed square
under some maps $\phi _1 , \ldots , \phi _t$ are some vertical
and some horizontal rectangles of sides $1$ and $2$. This
investigation is made possible by an extension of the method of
calculating Hausdorff dimension developed by P. Billingsley.
Keywords:
subset mathbb called self affine respect collection phi ldots phi affinities union sets phi dots phi subset mathbb mit phi bigcup leq leq phi mit phi subset mit phi denote bigcap geq mit phi given mit phi consisting contracting pseudo dilations affinities which preserve directions coordinate axes subject further mild technical restrictions there exist self affine sets mit phi each hausdorff dimension between zero positive number depending mit phi investigate detail special class cases mathbb where images fixed square under maps phi ldots phi vertical horizontal rectangles sides investigation made possible extension method calculating hausdorff dimension developed nbsp billingsley
Affiliations des auteurs :
A. G. Abercrombie 1 ; R. Nair 1
@article{10_4064_sm152_2_1,
author = {A. G. Abercrombie and R. Nair},
title = {On the {Hausdorff} dimension of certain self-affine sets},
journal = {Studia Mathematica},
pages = {105--124},
publisher = {mathdoc},
volume = {152},
number = {2},
year = {2002},
doi = {10.4064/sm152-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-2-1/}
}
TY - JOUR AU - A. G. Abercrombie AU - R. Nair TI - On the Hausdorff dimension of certain self-affine sets JO - Studia Mathematica PY - 2002 SP - 105 EP - 124 VL - 152 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm152-2-1/ DO - 10.4064/sm152-2-1 LA - en ID - 10_4064_sm152_2_1 ER -
A. G. Abercrombie; R. Nair. On the Hausdorff dimension of certain self-affine sets. Studia Mathematica, Tome 152 (2002) no. 2, pp. 105-124. doi: 10.4064/sm152-2-1
Cité par Sources :