Noncommutative extensions of the
Fourier transform and its logarithm
Studia Mathematica, Tome 152 (2002) no. 1, pp. 69-101
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce noncommutative extensions of the
Fourier transform of probability measures and its logarithm
to the algebra ${\cal A}(S)$ of complex-valued functions on the
free semigroup $S={\rm FS}(\{z,w\})$ on two generators.
First, to given probability measures $\mu$, $\nu$
with all moments finite,
we associate states $\widehat{\mu}$, $\widehat{\nu}$ on
the unital free *-bialgebra $({\cal B},\varepsilon ,{\mit\Delta})$ on two
self-adjoint generators $X,X'$ and a projection $P$.
Then we introduce and study cumulants
which are additive under the convolution
$\widehat{\mu}\star \widehat{\nu}=\widehat{\mu}\otimes
\widehat{\nu} \circ {\mit\Delta}$ when restricted
to the “noncommutative plane” ${\cal B}_{0}={\mathbb C}\langle X, X'\rangle$.
We find a combinatorial formula for the Möbius
function in the inversion formula and define the
moment and cumulant generating functions,
$M_{\widehat{\mu}}\{z,w\}$ and $L_{\widehat{\mu}}\{z,w\}$,
respectively, as elements of ${\cal A}(S)$.
When restricted to the subsemigroups ${\rm FS}(\{z\})$
and ${\rm FS}(\{w\})$, the
function $L_{\widehat{\mu}}\{z,w\}$ coincides with
the logarithm of the Fourier transform and
with the $K$-transform of $\mu$, respectively. Moreover,
$M_{\widehat{\mu}}\{z,w\}$
is a “semigroup interpolation” between the Fourier transform and the
Cauchy transform of $\mu$.
If one chooses a suitable weight function $W$ on the semigroup $S$, the moment
and cumulant generating functions become elements of the Banach algebra
$l^{1}(S,W)$.
Keywords:
introduce noncommutative extensions fourier transform probability measures its logarithm algebra cal complex valued functions semigroup generators first given probability measures moments finite associate states widehat widehat unital * bialgebra cal varepsilon mit delta self adjoint generators projection introduce study cumulants which additive under convolution widehat star widehat widehat otimes widehat circ mit delta restricted noncommutative plane cal mathbb langle rangle combinatorial formula bius function inversion formula define moment cumulant generating functions widehat widehat respectively elements cal restricted subsemigroups function widehat coincides logarithm fourier transform k transform respectively moreover widehat semigroup interpolation between fourier transform cauchy transform chooses suitable weight function semigroup moment cumulant generating functions become elements banach algebra
Affiliations des auteurs :
Romuald Lenczewski 1
@article{10_4064_sm152_1_5,
author = {Romuald Lenczewski},
title = {Noncommutative extensions of the
{Fourier} transform and its logarithm},
journal = {Studia Mathematica},
pages = {69--101},
publisher = {mathdoc},
volume = {152},
number = {1},
year = {2002},
doi = {10.4064/sm152-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-5/}
}
TY - JOUR AU - Romuald Lenczewski TI - Noncommutative extensions of the Fourier transform and its logarithm JO - Studia Mathematica PY - 2002 SP - 69 EP - 101 VL - 152 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-5/ DO - 10.4064/sm152-1-5 LA - en ID - 10_4064_sm152_1_5 ER -
Romuald Lenczewski. Noncommutative extensions of the Fourier transform and its logarithm. Studia Mathematica, Tome 152 (2002) no. 1, pp. 69-101. doi: 10.4064/sm152-1-5
Cité par Sources :