Noncommutative extensions of the Fourier transform and its logarithm
Studia Mathematica, Tome 152 (2002) no. 1, pp. 69-101

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce noncommutative extensions of the Fourier transform of probability measures and its logarithm to the algebra ${\cal A}(S)$ of complex-valued functions on the free semigroup $S={\rm FS}(\{z,w\})$ on two generators. First, to given probability measures $\mu$, $\nu$ with all moments finite, we associate states $\widehat{\mu}$, $\widehat{\nu}$ on the unital free *-bialgebra $({\cal B},\varepsilon ,{\mit\Delta})$ on two self-adjoint generators $X,X'$ and a projection $P$. Then we introduce and study cumulants which are additive under the convolution $\widehat{\mu}\star \widehat{\nu}=\widehat{\mu}\otimes \widehat{\nu} \circ {\mit\Delta}$ when restricted to the “noncommutative plane” ${\cal B}_{0}={\mathbb C}\langle X, X'\rangle$. We find a combinatorial formula for the Möbius function in the inversion formula and define the moment and cumulant generating functions, $M_{\widehat{\mu}}\{z,w\}$ and $L_{\widehat{\mu}}\{z,w\}$, respectively, as elements of ${\cal A}(S)$. When restricted to the subsemigroups ${\rm FS}(\{z\})$ and ${\rm FS}(\{w\})$, the function $L_{\widehat{\mu}}\{z,w\}$ coincides with the logarithm of the Fourier transform and with the $K$-transform of $\mu$, respectively. Moreover, $M_{\widehat{\mu}}\{z,w\}$ is a “semigroup interpolation” between the Fourier transform and the Cauchy transform of $\mu$. If one chooses a suitable weight function $W$ on the semigroup $S$, the moment and cumulant generating functions become elements of the Banach algebra $l^{1}(S,W)$.
DOI : 10.4064/sm152-1-5
Keywords: introduce noncommutative extensions fourier transform probability measures its logarithm algebra cal complex valued functions semigroup generators first given probability measures moments finite associate states widehat widehat unital * bialgebra cal varepsilon mit delta self adjoint generators projection introduce study cumulants which additive under convolution widehat star widehat widehat otimes widehat circ mit delta restricted noncommutative plane cal mathbb langle rangle combinatorial formula bius function inversion formula define moment cumulant generating functions widehat widehat respectively elements cal restricted subsemigroups function widehat coincides logarithm fourier transform k transform respectively moreover widehat semigroup interpolation between fourier transform cauchy transform chooses suitable weight function semigroup moment cumulant generating functions become elements banach algebra

Romuald Lenczewski 1

1 Institute of Mathematics Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
@article{10_4064_sm152_1_5,
     author = {Romuald Lenczewski},
     title = {Noncommutative extensions of the
 {Fourier} transform and its logarithm},
     journal = {Studia Mathematica},
     pages = {69--101},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {2002},
     doi = {10.4064/sm152-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-5/}
}
TY  - JOUR
AU  - Romuald Lenczewski
TI  - Noncommutative extensions of the
 Fourier transform and its logarithm
JO  - Studia Mathematica
PY  - 2002
SP  - 69
EP  - 101
VL  - 152
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-5/
DO  - 10.4064/sm152-1-5
LA  - en
ID  - 10_4064_sm152_1_5
ER  - 
%0 Journal Article
%A Romuald Lenczewski
%T Noncommutative extensions of the
 Fourier transform and its logarithm
%J Studia Mathematica
%D 2002
%P 69-101
%V 152
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-5/
%R 10.4064/sm152-1-5
%G en
%F 10_4064_sm152_1_5
Romuald Lenczewski. Noncommutative extensions of the
 Fourier transform and its logarithm. Studia Mathematica, Tome 152 (2002) no. 1, pp. 69-101. doi: 10.4064/sm152-1-5

Cité par Sources :