Consider the family
$$
\eqalign{
= {\mit\Delta} u + G(u),\ \quad t>0,\, x\in {\mit\Omega}_\varepsilon,\cr
\partial_{\nu_\varepsilon}u= 0,\ \quad t>0,\, x\in \partial {\mit\Omega}_\varepsilon,}
\tag*{$(E_\varepsilon)$}$$
of semilinear Neumann boundary value problems, where, for $\varepsilon>0$ small, the set
${\mit\Omega}_\varepsilon$ is a thin domain in $\mathbb R^l$, possibly with holes,
which collapses, as $\varepsilon\to0^+$, onto
a (curved) $k$-dimensional submanifold of $\mathbb R^l$.
If $G$ is dissipative, then equation $(E_\varepsilon)$ has a global attractor ${\mathcal A}_\varepsilon$.We identify a “limit” equation for the family $(E_\varepsilon)$, prove convergence
of trajectories and establish an upper semicontinuity result for the
family ${\mathcal A}_\varepsilon$
as $\varepsilon\to0^+$.
Keywords:
consider family eqalign mit delta quad mit omega varepsilon partial varepsilon quad partial mit omega varepsilon tag* varepsilon semilinear neumann boundary value problems where varepsilon small set mit omega varepsilon thin domain mathbb possibly holes which collapses varepsilon curved k dimensional submanifold mathbb dissipative equation varepsilon has global attractor nbsp mathcal varepsilon identify limit equation family varepsilon prove convergence trajectories establish upper semicontinuity result family mathcal varepsilon varepsilon
Affiliations des auteurs :
M. Prizzi 
1
;
M. Rinaldi 
2
;
K. P. Rybakowski 
3
1
Dipartimento di Scienze Matematiche Università degli Studi di Trieste Via Valerio, 12/b 34100 Trieste, Italy
2
DISCAFF Viale Ferrucci, 33 28100 Novara, Italy
3
Fachbereich Mathematik Universität Rostock Universitätsplatz 1 18055 Rostock, Germany
@article{10_4064_sm151_2_2,
author = {M. Prizzi and M. Rinaldi and K. P. Rybakowski},
title = {Curved thin domains and parabolic equations},
journal = {Studia Mathematica},
pages = {109--140},
year = {2002},
volume = {151},
number = {2},
doi = {10.4064/sm151-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-2/}
}
TY - JOUR
AU - M. Prizzi
AU - M. Rinaldi
AU - K. P. Rybakowski
TI - Curved thin domains and parabolic equations
JO - Studia Mathematica
PY - 2002
SP - 109
EP - 140
VL - 151
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-2/
DO - 10.4064/sm151-2-2
LA - en
ID - 10_4064_sm151_2_2
ER -
%0 Journal Article
%A M. Prizzi
%A M. Rinaldi
%A K. P. Rybakowski
%T Curved thin domains and parabolic equations
%J Studia Mathematica
%D 2002
%P 109-140
%V 151
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-2/
%R 10.4064/sm151-2-2
%G en
%F 10_4064_sm151_2_2
M. Prizzi; M. Rinaldi; K. P. Rybakowski. Curved thin domains and parabolic equations. Studia Mathematica, Tome 151 (2002) no. 2, pp. 109-140. doi: 10.4064/sm151-2-2