Curved thin domains and parabolic equations
Studia Mathematica, Tome 151 (2002) no. 2, pp. 109-140

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider the family $$ \eqalign{ = {\mit\Delta} u + G(u),\ \quad t>0,\, x\in {\mit\Omega}_\varepsilon,\cr \partial_{\nu_\varepsilon}u= 0,\ \quad t>0,\, x\in \partial {\mit\Omega}_\varepsilon,} \tag*{$(E_\varepsilon)$}$$ of semilinear Neumann boundary value problems, where, for $\varepsilon>0$ small, the set ${\mit\Omega}_\varepsilon$ is a thin domain in $\mathbb R^l$, possibly with holes, which collapses, as $\varepsilon\to0^+$, onto a (curved) $k$-dimensional submanifold of $\mathbb R^l$. If $G$ is dissipative, then equation $(E_\varepsilon)$ has a global attractor ${\mathcal A}_\varepsilon$.We identify a “limit” equation for the family $(E_\varepsilon)$, prove convergence of trajectories and establish an upper semicontinuity result for the family ${\mathcal A}_\varepsilon$ as $\varepsilon\to0^+$.
DOI : 10.4064/sm151-2-2
Keywords: consider family eqalign mit delta quad mit omega varepsilon partial varepsilon quad partial mit omega varepsilon tag* varepsilon semilinear neumann boundary value problems where varepsilon small set mit omega varepsilon thin domain mathbb possibly holes which collapses varepsilon curved k dimensional submanifold mathbb dissipative equation varepsilon has global attractor nbsp mathcal varepsilon identify limit equation family varepsilon prove convergence trajectories establish upper semicontinuity result family mathcal varepsilon varepsilon

M. Prizzi 1 ; M. Rinaldi 2 ; K. P. Rybakowski 3

1 Dipartimento di Scienze Matematiche Università degli Studi di Trieste Via Valerio, 12/b 34100 Trieste, Italy
2 DISCAFF Viale Ferrucci, 33 28100 Novara, Italy
3 Fachbereich Mathematik Universität Rostock Universitätsplatz 1 18055 Rostock, Germany
@article{10_4064_sm151_2_2,
     author = {M. Prizzi and M. Rinaldi and K. P. Rybakowski},
     title = {Curved thin domains and parabolic equations},
     journal = {Studia Mathematica},
     pages = {109--140},
     publisher = {mathdoc},
     volume = {151},
     number = {2},
     year = {2002},
     doi = {10.4064/sm151-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-2/}
}
TY  - JOUR
AU  - M. Prizzi
AU  - M. Rinaldi
AU  - K. P. Rybakowski
TI  - Curved thin domains and parabolic equations
JO  - Studia Mathematica
PY  - 2002
SP  - 109
EP  - 140
VL  - 151
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-2/
DO  - 10.4064/sm151-2-2
LA  - en
ID  - 10_4064_sm151_2_2
ER  - 
%0 Journal Article
%A M. Prizzi
%A M. Rinaldi
%A K. P. Rybakowski
%T Curved thin domains and parabolic equations
%J Studia Mathematica
%D 2002
%P 109-140
%V 151
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-2/
%R 10.4064/sm151-2-2
%G en
%F 10_4064_sm151_2_2
M. Prizzi; M. Rinaldi; K. P. Rybakowski. Curved thin domains and parabolic equations. Studia Mathematica, Tome 151 (2002) no. 2, pp. 109-140. doi: 10.4064/sm151-2-2

Cité par Sources :