Curved thin domains and parabolic equations
Studia Mathematica, Tome 151 (2002) no. 2, pp. 109-140
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Consider the family
$$
\eqalign{
= {\mit\Delta} u + G(u),\ \quad t>0,\, x\in {\mit\Omega}_\varepsilon,\cr
\partial_{\nu_\varepsilon}u= 0,\ \quad t>0,\, x\in \partial {\mit\Omega}_\varepsilon,}
\tag*{$(E_\varepsilon)$}$$
of semilinear Neumann boundary value problems, where, for $\varepsilon>0$ small, the set
${\mit\Omega}_\varepsilon$ is a thin domain in $\mathbb R^l$, possibly with holes,
which collapses, as $\varepsilon\to0^+$, onto
a (curved) $k$-dimensional submanifold of $\mathbb R^l$.
If $G$ is dissipative, then equation $(E_\varepsilon)$ has a global attractor ${\mathcal A}_\varepsilon$.We identify a “limit” equation for the family $(E_\varepsilon)$, prove convergence
of trajectories and establish an upper semicontinuity result for the
family ${\mathcal A}_\varepsilon$
as $\varepsilon\to0^+$.
Keywords:
consider family eqalign mit delta quad mit omega varepsilon partial varepsilon quad partial mit omega varepsilon tag* varepsilon semilinear neumann boundary value problems where varepsilon small set mit omega varepsilon thin domain mathbb possibly holes which collapses varepsilon curved k dimensional submanifold mathbb dissipative equation varepsilon has global attractor nbsp mathcal varepsilon identify limit equation family varepsilon prove convergence trajectories establish upper semicontinuity result family mathcal varepsilon varepsilon
Affiliations des auteurs :
M. Prizzi 1 ; M. Rinaldi 2 ; K. P. Rybakowski 3
@article{10_4064_sm151_2_2,
author = {M. Prizzi and M. Rinaldi and K. P. Rybakowski},
title = {Curved thin domains and parabolic equations},
journal = {Studia Mathematica},
pages = {109--140},
publisher = {mathdoc},
volume = {151},
number = {2},
year = {2002},
doi = {10.4064/sm151-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-2/}
}
TY - JOUR AU - M. Prizzi AU - M. Rinaldi AU - K. P. Rybakowski TI - Curved thin domains and parabolic equations JO - Studia Mathematica PY - 2002 SP - 109 EP - 140 VL - 151 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-2/ DO - 10.4064/sm151-2-2 LA - en ID - 10_4064_sm151_2_2 ER -
M. Prizzi; M. Rinaldi; K. P. Rybakowski. Curved thin domains and parabolic equations. Studia Mathematica, Tome 151 (2002) no. 2, pp. 109-140. doi: 10.4064/sm151-2-2
Cité par Sources :