Let $Y$ be a Banach space and let $S\subset L_p$ be a
subspace of an $L_p$ space, for some $p\in (1,\infty )$. We
consider two operators $B$ and $C$ acting on $S$ and $Y$
respectively and satisfying the so-called maximal regularity
property. Let ${\cal B}$ and ${\cal C}$ be their
natural extensions to $S(Y)\subset L_p(Y)$. We investigate
conditions that imply that ${\cal B} +{\cal C}$ is
closed and has the maximal regularity property. Extending
theorems of Lamberton and Weis, we show in particular that this
holds if $Y$ is a UMD Banach lattice and $e^{-tB}$ is a positive
contraction on $L_p$ for any $t\geq 0$.
Keywords:
banach space subset subspace space infty consider operators acting respectively satisfying so called maximal regularity property cal cal their natural extensions subset investigate conditions imply cal cal closed has maximal regularity property extending theorems lamberton weis particular holds umd banach lattice tb positive contraction geq
Affiliations des auteurs :
Christian Le Merdy 
1
;
Arnaud Simard 
1
1
Département de Mathématiques Université de Franche-Comté 25030 Besançon Cedex, France
@article{10_4064_sm147_2_1,
author = {Christian Le Merdy and Arnaud Simard},
title = {Sums of commuting operators with maximal regularity},
journal = {Studia Mathematica},
pages = {103--118},
year = {2001},
volume = {147},
number = {2},
doi = {10.4064/sm147-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-1/}
}
TY - JOUR
AU - Christian Le Merdy
AU - Arnaud Simard
TI - Sums of commuting operators with maximal regularity
JO - Studia Mathematica
PY - 2001
SP - 103
EP - 118
VL - 147
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-1/
DO - 10.4064/sm147-2-1
LA - en
ID - 10_4064_sm147_2_1
ER -
%0 Journal Article
%A Christian Le Merdy
%A Arnaud Simard
%T Sums of commuting operators with maximal regularity
%J Studia Mathematica
%D 2001
%P 103-118
%V 147
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-1/
%R 10.4064/sm147-2-1
%G en
%F 10_4064_sm147_2_1
Christian Le Merdy; Arnaud Simard. Sums of commuting operators with maximal regularity. Studia Mathematica, Tome 147 (2001) no. 2, pp. 103-118. doi: 10.4064/sm147-2-1