Sums of commuting operators with maximal regularity
Studia Mathematica, Tome 147 (2001) no. 2, pp. 103-118

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $Y$ be a Banach space and let $S\subset L_p$ be a subspace of an $L_p$ space, for some $p\in (1,\infty )$. We consider two operators $B$ and $C$ acting on $S$ and $Y$ respectively and satisfying the so-called maximal regularity property. Let ${\cal B}$ and ${\cal C}$ be their natural extensions to $S(Y)\subset L_p(Y)$. We investigate conditions that imply that ${\cal B} +{\cal C}$ is closed and has the maximal regularity property. Extending theorems of Lamberton and Weis, we show in particular that this holds if $Y$ is a UMD Banach lattice and $e^{-tB}$ is a positive contraction on $L_p$ for any $t\geq 0$.
DOI : 10.4064/sm147-2-1
Keywords: banach space subset subspace space infty consider operators acting respectively satisfying so called maximal regularity property cal cal their natural extensions subset investigate conditions imply cal cal closed has maximal regularity property extending theorems lamberton weis particular holds umd banach lattice tb positive contraction geq

Christian Le Merdy 1 ; Arnaud Simard 1

1 Département de Mathématiques Université de Franche-Comté 25030 Besançon Cedex, France
@article{10_4064_sm147_2_1,
     author = {Christian Le Merdy and Arnaud Simard},
     title = {Sums of commuting operators with maximal regularity},
     journal = {Studia Mathematica},
     pages = {103--118},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2001},
     doi = {10.4064/sm147-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-1/}
}
TY  - JOUR
AU  - Christian Le Merdy
AU  - Arnaud Simard
TI  - Sums of commuting operators with maximal regularity
JO  - Studia Mathematica
PY  - 2001
SP  - 103
EP  - 118
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-1/
DO  - 10.4064/sm147-2-1
LA  - en
ID  - 10_4064_sm147_2_1
ER  - 
%0 Journal Article
%A Christian Le Merdy
%A Arnaud Simard
%T Sums of commuting operators with maximal regularity
%J Studia Mathematica
%D 2001
%P 103-118
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-1/
%R 10.4064/sm147-2-1
%G en
%F 10_4064_sm147_2_1
Christian Le Merdy; Arnaud Simard. Sums of commuting operators with maximal regularity. Studia Mathematica, Tome 147 (2001) no. 2, pp. 103-118. doi: 10.4064/sm147-2-1

Cité par Sources :