Gabor meets Littlewood–Paley:
Gabor expansions in $L^p({{\mathbb R}}^d)$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 146 (2001) no. 1, pp. 15-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              It is known that Gabor expansions do not converge
unconditionally in $L^p$ and that $L^p$ cannot be characterized
in terms of the magnitudes of Gabor coefficients. By using a
combination of Littlewood–Paley and Gabor theory, we show that
$L^p$ can nevertheless be characterized in terms of Gabor
expansions, and that the partial sums of Gabor expansions
converge in $L^p$-norm.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
known gabor expansions converge unconditionally cannot characterized terms magnitudes gabor coefficients using combination littlewood paley gabor theory nevertheless characterized terms gabor expansions partial sums gabor expansions converge p norm
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Karlheinz Gröchenig 1 ; Christopher Heil 2
@article{10_4064_sm146_1_2,
     author = {Karlheinz Gr\"ochenig and Christopher Heil},
     title = {Gabor meets {Littlewood{\textendash}Paley:
Gabor} expansions in $L^p({{\mathbb R}}^d)$},
     journal = {Studia Mathematica},
     pages = {15--33},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2001},
     doi = {10.4064/sm146-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-2/}
}
                      
                      
                    TY  - JOUR
AU  - Karlheinz Gröchenig
AU  - Christopher Heil
TI  - Gabor meets Littlewood–Paley:
Gabor expansions in $L^p({{\mathbb R}}^d)$
JO  - Studia Mathematica
PY  - 2001
SP  - 15
EP  - 33
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-2/
DO  - 10.4064/sm146-1-2
LA  - en
ID  - 10_4064_sm146_1_2
ER  - 
                      
                      
                    %0 Journal Article
%A Karlheinz Gröchenig
%A Christopher Heil
%T Gabor meets Littlewood–Paley:
Gabor expansions in $L^p({{\mathbb R}}^d)$
%J Studia Mathematica
%D 2001
%P 15-33
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-2/
%R 10.4064/sm146-1-2
%G en
%F 10_4064_sm146_1_2
                      
                      
                    Karlheinz Gröchenig; Christopher Heil. Gabor meets Littlewood–Paley:
Gabor expansions in $L^p({{\mathbb R}}^d)$. Studia Mathematica, Tome 146 (2001) no. 1, pp. 15-33. doi: 10.4064/sm146-1-2
                  
                Cité par Sources :
