Gabor meets Littlewood–Paley:
Gabor expansions in $L^p({{\mathbb R}}^d)$
Studia Mathematica, Tome 146 (2001) no. 1, pp. 15-33
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is known that Gabor expansions do not converge
unconditionally in $L^p$ and that $L^p$ cannot be characterized
in terms of the magnitudes of Gabor coefficients. By using a
combination of Littlewood–Paley and Gabor theory, we show that
$L^p$ can nevertheless be characterized in terms of Gabor
expansions, and that the partial sums of Gabor expansions
converge in $L^p$-norm.
Keywords:
known gabor expansions converge unconditionally cannot characterized terms magnitudes gabor coefficients using combination littlewood paley gabor theory nevertheless characterized terms gabor expansions partial sums gabor expansions converge p norm
Affiliations des auteurs :
Karlheinz Gröchenig 1 ; Christopher Heil 2
@article{10_4064_sm146_1_2,
author = {Karlheinz Gr\"ochenig and Christopher Heil},
title = {Gabor meets {Littlewood{\textendash}Paley:
Gabor} expansions in $L^p({{\mathbb R}}^d)$},
journal = {Studia Mathematica},
pages = {15--33},
year = {2001},
volume = {146},
number = {1},
doi = {10.4064/sm146-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-2/}
}
TY - JOUR
AU - Karlheinz Gröchenig
AU - Christopher Heil
TI - Gabor meets Littlewood–Paley:
Gabor expansions in $L^p({{\mathbb R}}^d)$
JO - Studia Mathematica
PY - 2001
SP - 15
EP - 33
VL - 146
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-2/
DO - 10.4064/sm146-1-2
LA - en
ID - 10_4064_sm146_1_2
ER -
Karlheinz Gröchenig; Christopher Heil. Gabor meets Littlewood–Paley:
Gabor expansions in $L^p({{\mathbb R}}^d)$. Studia Mathematica, Tome 146 (2001) no. 1, pp. 15-33. doi: 10.4064/sm146-1-2
Cité par Sources :