General Haar systems and greedy approximation
Studia Mathematica, Tome 145 (2001) no. 2, pp. 165-184

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that each general Haar system is permutatively equivalent in $L^p([0,1])$, $1 p \infty $, to a subsequence of the classical (i.e. dyadic) Haar system. As a consequence, each general Haar system is a greedy basis in $L^p([0,1])$, $1 p \infty $. In addition, we give an example of a general Haar system whose tensor products are greedy bases in each $L^p([0,1]^d)$, $1 p \infty $, $d \in {\mathbb N}$. This is in contrast to [11], where it has been shown that the tensor products of the dyadic Haar system are not greedy bases in $L^p([0,1]^d)$ for $1 p \infty $, $p \not =2$ and $d\geq 2$. We also note that the above-mentioned general Haar system is not permutatively equivalent to the whole dyadic Haar system in any $L^p([0,1])$, $1 p \infty $, $p \not =2$.
DOI : 10.4064/sm145-2-5
Keywords: each general haar system permutatively equivalent infty subsequence classical dyadic haar system consequence each general haar system greedy basis infty addition example general haar system whose tensor products greedy bases each infty mathbb contrast where has shown tensor products dyadic haar system greedy bases infty geq note above mentioned general haar system permutatively equivalent whole dyadic haar system infty

Anna Kamont 1

1 Institute of Mathematics Polish Academy of Sciences Abrahama 18 81-825 Sopot, Poland
@article{10_4064_sm145_2_5,
     author = {Anna Kamont},
     title = {General {Haar} systems and greedy approximation},
     journal = {Studia Mathematica},
     pages = {165--184},
     publisher = {mathdoc},
     volume = {145},
     number = {2},
     year = {2001},
     doi = {10.4064/sm145-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-5/}
}
TY  - JOUR
AU  - Anna Kamont
TI  - General Haar systems and greedy approximation
JO  - Studia Mathematica
PY  - 2001
SP  - 165
EP  - 184
VL  - 145
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-5/
DO  - 10.4064/sm145-2-5
LA  - en
ID  - 10_4064_sm145_2_5
ER  - 
%0 Journal Article
%A Anna Kamont
%T General Haar systems and greedy approximation
%J Studia Mathematica
%D 2001
%P 165-184
%V 145
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-5/
%R 10.4064/sm145-2-5
%G en
%F 10_4064_sm145_2_5
Anna Kamont. General Haar systems and greedy approximation. Studia Mathematica, Tome 145 (2001) no. 2, pp. 165-184. doi: 10.4064/sm145-2-5

Cité par Sources :