Exponential bounds for noncommuting systems of matrices
Studia Mathematica, Tome 144 (2001) no. 3, pp. 197-207
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is shown that a finite system $T$ of matrices whose real
linear combinations have real spectrum satisfies a bound of the
form $\| e^{i\langle T,\zeta
\rangle }\| \le C(1+|\zeta
|)^se^{r|\Im \zeta |}$. The proof appeals to the monogenic
functional calculus.
Keywords:
shown finite system matrices whose real linear combinations have real spectrum satisfies bound form langle zeta rangle zeta zeta proof appeals monogenic functional calculus
Affiliations des auteurs :
Brian Jefferies 1
@article{10_4064_sm144_3_1,
author = {Brian Jefferies},
title = {Exponential bounds for noncommuting systems of matrices},
journal = {Studia Mathematica},
pages = {197--207},
year = {2001},
volume = {144},
number = {3},
doi = {10.4064/sm144-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-3-1/}
}
Brian Jefferies. Exponential bounds for noncommuting systems of matrices. Studia Mathematica, Tome 144 (2001) no. 3, pp. 197-207. doi: 10.4064/sm144-3-1
Cité par Sources :