Exponential bounds for noncommuting systems of matrices
Studia Mathematica, Tome 144 (2001) no. 3, pp. 197-207 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

It is shown that a finite system $T$ of matrices whose real linear combinations have real spectrum satisfies a bound of the form $\| e^{i\langle T,\zeta \rangle }\| \le C(1+|\zeta |)^se^{r|\Im \zeta |}$. The proof appeals to the monogenic functional calculus.
DOI : 10.4064/sm144-3-1
Keywords: shown finite system matrices whose real linear combinations have real spectrum satisfies bound form langle zeta rangle zeta zeta proof appeals monogenic functional calculus

Brian Jefferies 1

1 School of Mathematics The University of New South Wales Sydney, NSW 2052, Australia
@article{10_4064_sm144_3_1,
     author = {Brian Jefferies},
     title = {Exponential bounds for noncommuting systems of matrices},
     journal = {Studia Mathematica},
     pages = {197--207},
     year = {2001},
     volume = {144},
     number = {3},
     doi = {10.4064/sm144-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-3-1/}
}
TY  - JOUR
AU  - Brian Jefferies
TI  - Exponential bounds for noncommuting systems of matrices
JO  - Studia Mathematica
PY  - 2001
SP  - 197
EP  - 207
VL  - 144
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm144-3-1/
DO  - 10.4064/sm144-3-1
LA  - en
ID  - 10_4064_sm144_3_1
ER  - 
%0 Journal Article
%A Brian Jefferies
%T Exponential bounds for noncommuting systems of matrices
%J Studia Mathematica
%D 2001
%P 197-207
%V 144
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm144-3-1/
%R 10.4064/sm144-3-1
%G en
%F 10_4064_sm144_3_1
Brian Jefferies. Exponential bounds for noncommuting systems of matrices. Studia Mathematica, Tome 144 (2001) no. 3, pp. 197-207. doi: 10.4064/sm144-3-1

Cité par Sources :