Quasi-constricted linear operators on Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 144 (2001) no. 2, pp. 169-179
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $X$ be a Banach space over $\mathbb C$. The bounded linear
operator $T$ on $X$ is called quasi-constricted if the subspace
$X_0:=\{ x\in X:
\lim_{n\to \infty }\| T^nx\|
=0\} $ is closed and has finite codimension. We
show that a power bounded linear operator $T\in L(X)$ is
quasi-constricted iff it has an attractor $A$ with Hausdorff
measure of noncompactness $\chi _{\| \cdot
\| _1}(A) 1$ for some equivalent norm
$\| \cdot \| _1$ on $X$.
Moreover, we characterize the essential spectral radius of an
arbitrary bounded operator $T$ by quasi-constrictedness of
scalar multiples of $T$. Finally, we prove that every
quasi-constricted operator $T$ such that $\overline {\lambda }T$
is mean ergodic for all $\lambda $ in the peripheral spectrum
$\sigma _\pi (T)$ of $T$ is constricted and power bounded, and
hence has a compact attractor.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
banach space mathbb bounded linear operator called quasi constricted subspace lim infty closed has finite codimension power bounded linear operator quasi constricted has attractor hausdorff measure noncompactness chi cdot equivalent norm cdot moreover characterize essential spectral radius arbitrary bounded operator quasi constrictedness scalar multiples finally prove every quasi constricted operator overline lambda mean ergodic lambda peripheral spectrum sigma constricted power bounded hence has compact attractor
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Eduard Yu. Emel'yanov 1 ; Manfred P. H. Wolff 2
@article{10_4064_sm144_2_5,
     author = {Eduard Yu. Emel'yanov and Manfred P. H. Wolff},
     title = {Quasi-constricted linear operators on {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {169--179},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {2001},
     doi = {10.4064/sm144-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-5/}
}
                      
                      
                    TY - JOUR AU - Eduard Yu. Emel'yanov AU - Manfred P. H. Wolff TI - Quasi-constricted linear operators on Banach spaces JO - Studia Mathematica PY - 2001 SP - 169 EP - 179 VL - 144 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-5/ DO - 10.4064/sm144-2-5 LA - en ID - 10_4064_sm144_2_5 ER -
Eduard Yu. Emel'yanov; Manfred P. H. Wolff. Quasi-constricted linear operators on Banach spaces. Studia Mathematica, Tome 144 (2001) no. 2, pp. 169-179. doi: 10.4064/sm144-2-5
Cité par Sources :
