1Sobolev Institute of Mathematics at Novosibirsk Acad. Koptyug pr. 4 630090 Novosibirsk, Russia Current address Mathematisches Institut der Universität Tübingen A. D. Morgenstelle 2 D-72076 Tübingen, Germany 2Mathematisches Institut der Universität Tübingen A. D. Morgenstelle 2 D-72076 Tübingen, Germany
Studia Mathematica, Tome 144 (2001) no. 2, pp. 169-179
Let $X$ be a Banach space over $\mathbb C$. The bounded linear
operator $T$ on $X$ is called quasi-constricted if the subspace
$X_0:=\{ x\in X:
\lim_{n\to \infty }\| T^nx\|
=0\} $ is closed and has finite codimension. We
show that a power bounded linear operator $T\in L(X)$ is
quasi-constricted iff it has an attractor $A$ with Hausdorff
measure of noncompactness $\chi _{\| \cdot
\| _1}(A) 1$ for some equivalent norm
$\| \cdot \| _1$ on $X$.
Moreover, we characterize the essential spectral radius of an
arbitrary bounded operator $T$ by quasi-constrictedness of
scalar multiples of $T$. Finally, we prove that every
quasi-constricted operator $T$ such that $\overline {\lambda }T$
is mean ergodic for all $\lambda $ in the peripheral spectrum
$\sigma _\pi (T)$ of $T$ is constricted and power bounded, and
hence has a compact attractor.
Keywords:
banach space mathbb bounded linear operator called quasi constricted subspace lim infty closed has finite codimension power bounded linear operator quasi constricted has attractor hausdorff measure noncompactness chi cdot equivalent norm cdot moreover characterize essential spectral radius arbitrary bounded operator quasi constrictedness scalar multiples finally prove every quasi constricted operator overline lambda mean ergodic lambda peripheral spectrum sigma constricted power bounded hence has compact attractor
Affiliations des auteurs :
Eduard Yu. Emel'yanov 
1
;
Manfred P. H. Wolff 
2
1
Sobolev Institute of Mathematics at Novosibirsk Acad. Koptyug pr. 4 630090 Novosibirsk, Russia Current address Mathematisches Institut der Universität Tübingen A. D. Morgenstelle 2 D-72076 Tübingen, Germany
2
Mathematisches Institut der Universität Tübingen A. D. Morgenstelle 2 D-72076 Tübingen, Germany
@article{10_4064_sm144_2_5,
author = {Eduard Yu. Emel'yanov and Manfred P. H. Wolff},
title = {Quasi-constricted linear operators on {Banach} spaces},
journal = {Studia Mathematica},
pages = {169--179},
year = {2001},
volume = {144},
number = {2},
doi = {10.4064/sm144-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-5/}
}
TY - JOUR
AU - Eduard Yu. Emel'yanov
AU - Manfred P. H. Wolff
TI - Quasi-constricted linear operators on Banach spaces
JO - Studia Mathematica
PY - 2001
SP - 169
EP - 179
VL - 144
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-5/
DO - 10.4064/sm144-2-5
LA - en
ID - 10_4064_sm144_2_5
ER -
%0 Journal Article
%A Eduard Yu. Emel'yanov
%A Manfred P. H. Wolff
%T Quasi-constricted linear operators on Banach spaces
%J Studia Mathematica
%D 2001
%P 169-179
%V 144
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-5/
%R 10.4064/sm144-2-5
%G en
%F 10_4064_sm144_2_5
Eduard Yu. Emel'yanov; Manfred P. H. Wolff. Quasi-constricted linear operators on Banach spaces. Studia Mathematica, Tome 144 (2001) no. 2, pp. 169-179. doi: 10.4064/sm144-2-5