The minimal operator
and the geometric maximal operator in ${\Bbb R}^n$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 144 (2001) no. 1, pp. 1-37
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              
We prove two-weight norm inequalities in ${\mathbb R}^n$ for the minimal operator 
$$  {\Large m}f(x)
= \mathop {\rm inf}_{Q\ni x} {1\over |Q|} \int _Q
|f|\,  dy, $$ extending to higher dimensions
results obtained by Cruz-Uribe, Neugebauer and Olesen [8] on the
real line. As an application we extend to ${\mathbb R}^n$ weighted norm inequalities for the geometric
maximal operator
 $$ M_0f(x) = \mathop
{\rm sup}_{Q\ni x}\mathop {\rm exp}\nolimits
\left ({1\over |Q|}\int _Q \mathop {\rm log}\nolimits |f|\, dx
\right
),  $$ proved by Yin and Muckenhoupt
[27].  We also give norm inequalities for the centered
minimal operator, study powers of doubling weights and give
sufficient conditions for the geometric maximal operator to be
equal to the closely related limiting operator $M_0^*f=\mathop
{\rm lim}_{r\rightarrow 0}M(|f|^r)^{1/r}$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
prove two weight norm inequalities mathbb minimal operator large mathop inf int extending higher dimensions results obtained cruz uribe neugebauer olesen real line application extend mathbb weighted norm inequalities geometric maximal operator mathop sup mathop exp nolimits int mathop log nolimits right proved yin muckenhoupt norm inequalities centered minimal operator study powers doubling weights sufficient conditions geometric maximal operator equal closely related limiting operator *f mathop lim rightarrow
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              David Cruz-Uribe, SFO 1
@article{10_4064_sm144_1_1,
     author = {David Cruz-Uribe, SFO},
     title = {The minimal operator
and the geometric maximal operator in ${\Bbb R}^n$},
     journal = {Studia Mathematica},
     pages = {1--37},
     publisher = {mathdoc},
     volume = {144},
     number = {1},
     year = {2001},
     doi = {10.4064/sm144-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-1-1/}
}
                      
                      
                    TY  - JOUR
AU  - David Cruz-Uribe, SFO
TI  - The minimal operator
and the geometric maximal operator in ${\Bbb R}^n$
JO  - Studia Mathematica
PY  - 2001
SP  - 1
EP  - 37
VL  - 144
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm144-1-1/
DO  - 10.4064/sm144-1-1
LA  - en
ID  - 10_4064_sm144_1_1
ER  - 
                      
                      
                    David Cruz-Uribe, SFO. The minimal operator
and the geometric maximal operator in ${\Bbb R}^n$. Studia Mathematica, Tome 144 (2001) no. 1, pp. 1-37. doi: 10.4064/sm144-1-1
                  
                Cité par Sources :
