The minimal operator and the geometric maximal operator in ${\Bbb R}^n$
Studia Mathematica, Tome 144 (2001) no. 1, pp. 1-37

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove two-weight norm inequalities in ${\mathbb R}^n$ for the minimal operator $$ {\Large m}f(x) = \mathop {\rm inf}_{Q\ni x} {1\over |Q|} \int _Q |f|\, dy, $$ extending to higher dimensions results obtained by Cruz-Uribe, Neugebauer and Olesen [8] on the real line. As an application we extend to ${\mathbb R}^n$ weighted norm inequalities for the geometric maximal operator $$ M_0f(x) = \mathop {\rm sup}_{Q\ni x}\mathop {\rm exp}\nolimits \left ({1\over |Q|}\int _Q \mathop {\rm log}\nolimits |f|\, dx \right ), $$ proved by Yin and Muckenhoupt [27]. We also give norm inequalities for the centered minimal operator, study powers of doubling weights and give sufficient conditions for the geometric maximal operator to be equal to the closely related limiting operator $M_0^*f=\mathop {\rm lim}_{r\rightarrow 0}M(|f|^r)^{1/r}$.
DOI : 10.4064/sm144-1-1
Keywords: prove two weight norm inequalities mathbb minimal operator large mathop inf int extending higher dimensions results obtained cruz uribe neugebauer olesen real line application extend mathbb weighted norm inequalities geometric maximal operator mathop sup mathop exp nolimits int mathop log nolimits right proved yin muckenhoupt norm inequalities centered minimal operator study powers doubling weights sufficient conditions geometric maximal operator equal closely related limiting operator *f mathop lim rightarrow

David Cruz-Uribe, SFO 1

1 Department of Mathematics Trinity College Hartford, CT 06106-3100, U.S.A.
@article{10_4064_sm144_1_1,
     author = {David Cruz-Uribe, SFO},
     title = {The minimal operator
and the geometric maximal operator in ${\Bbb R}^n$},
     journal = {Studia Mathematica},
     pages = {1--37},
     publisher = {mathdoc},
     volume = {144},
     number = {1},
     year = {2001},
     doi = {10.4064/sm144-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-1-1/}
}
TY  - JOUR
AU  - David Cruz-Uribe, SFO
TI  - The minimal operator
and the geometric maximal operator in ${\Bbb R}^n$
JO  - Studia Mathematica
PY  - 2001
SP  - 1
EP  - 37
VL  - 144
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm144-1-1/
DO  - 10.4064/sm144-1-1
LA  - en
ID  - 10_4064_sm144_1_1
ER  - 
%0 Journal Article
%A David Cruz-Uribe, SFO
%T The minimal operator
and the geometric maximal operator in ${\Bbb R}^n$
%J Studia Mathematica
%D 2001
%P 1-37
%V 144
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm144-1-1/
%R 10.4064/sm144-1-1
%G en
%F 10_4064_sm144_1_1
David Cruz-Uribe, SFO. The minimal operator
and the geometric maximal operator in ${\Bbb R}^n$. Studia Mathematica, Tome 144 (2001) no. 1, pp. 1-37. doi: 10.4064/sm144-1-1

Cité par Sources :