The Heisenberg group and the group Fourier transform of regular homogeneous distributions
Studia Mathematica, Tome 143 (2000) no. 3, pp. 251-266

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We calculate the group Fourier transform of regular homogeneous distributions defined on the Heisenberg group, $H^n$. All such distributions can be written as an infinite sum of terms of the form $f(θ)\overline{w}^{-k}P(z)$, where $(z,t) ∈ ℂ^{n} × ℝ$, $w = |z|^2 - it$, $θ = arg(\overline{w/w)$ and P(z) is an element of an orthonormal basis for the spherical harmonics. The formulas derived give the Fourier transform of the distribution in terms of a smooth kernel of the variable θ and the Weyl correspondent of P.
DOI : 10.4064/sm-143-3-251-266

Susan Slome 1

1
@article{10_4064_sm_143_3_251_266,
     author = {Susan Slome},
     title = {The {Heisenberg} group and the group {Fourier} transform of regular homogeneous distributions},
     journal = {Studia Mathematica},
     pages = {251--266},
     publisher = {mathdoc},
     volume = {143},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-143-3-251-266},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-251-266/}
}
TY  - JOUR
AU  - Susan Slome
TI  - The Heisenberg group and the group Fourier transform of regular homogeneous distributions
JO  - Studia Mathematica
PY  - 2000
SP  - 251
EP  - 266
VL  - 143
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-251-266/
DO  - 10.4064/sm-143-3-251-266
LA  - en
ID  - 10_4064_sm_143_3_251_266
ER  - 
%0 Journal Article
%A Susan Slome
%T The Heisenberg group and the group Fourier transform of regular homogeneous distributions
%J Studia Mathematica
%D 2000
%P 251-266
%V 143
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-251-266/
%R 10.4064/sm-143-3-251-266
%G en
%F 10_4064_sm_143_3_251_266
Susan Slome. The Heisenberg group and the group Fourier transform of regular homogeneous distributions. Studia Mathematica, Tome 143 (2000) no. 3, pp. 251-266. doi: 10.4064/sm-143-3-251-266

Cité par Sources :