On the size of approximately convex sets in normed spaces
Studia Mathematica, Tome 140 (2000) no. 3, pp. 213-241

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a normed space. A set A ⊆ X is approximately convex} if d(ta+(1-t)b,A)≤1 for all a,b ∈ A and t ∈ [0,1]. We prove that every n-dimensional normed space contains approximately convex sets A with $ℋ(A,Co(A))≥log_2n-1$ and $diam(A)≤C√n(ln n)^2$, where ℋ denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C[0,1] such that ℋ(A,Co(A))=(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.
DOI : 10.4064/sm-140-3-213-241

S. J. Dilworth 1 ; Ralph Howard 1 ; James W. Roberts 1

1
@article{10_4064_sm_140_3_213_241,
     author = {S. J. Dilworth and Ralph Howard and James W. Roberts},
     title = {On the size of approximately convex sets in normed spaces},
     journal = {Studia Mathematica},
     pages = {213--241},
     publisher = {mathdoc},
     volume = {140},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-140-3-213-241},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-213-241/}
}
TY  - JOUR
AU  - S. J. Dilworth
AU  - Ralph Howard
AU  - James W. Roberts
TI  - On the size of approximately convex sets in normed spaces
JO  - Studia Mathematica
PY  - 2000
SP  - 213
EP  - 241
VL  - 140
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-213-241/
DO  - 10.4064/sm-140-3-213-241
LA  - en
ID  - 10_4064_sm_140_3_213_241
ER  - 
%0 Journal Article
%A S. J. Dilworth
%A Ralph Howard
%A James W. Roberts
%T On the size of approximately convex sets in normed spaces
%J Studia Mathematica
%D 2000
%P 213-241
%V 140
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-213-241/
%R 10.4064/sm-140-3-213-241
%G en
%F 10_4064_sm_140_3_213_241
S. J. Dilworth; Ralph Howard; James W. Roberts. On the size of approximately convex sets in normed spaces. Studia Mathematica, Tome 140 (2000) no. 3, pp. 213-241. doi: 10.4064/sm-140-3-213-241

Cité par Sources :