On the size of approximately convex sets in normed spaces
Studia Mathematica, Tome 140 (2000) no. 3, pp. 213-241
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let X be a normed space. A set A ⊆ X is approximately convex} if d(ta+(1-t)b,A)≤1 for all a,b ∈ A and t ∈ [0,1]. We prove that every n-dimensional normed space contains approximately convex sets A with $ℋ(A,Co(A))≥log_2n-1$ and $diam(A)≤C√n(ln n)^2$, where ℋ denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C[0,1] such that ℋ(A,Co(A))=(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.
Affiliations des auteurs :
S. J. Dilworth 1 ; Ralph Howard 1 ; James W. Roberts 1
@article{10_4064_sm_140_3_213_241,
author = {S. J. Dilworth and Ralph Howard and James W. Roberts},
title = {On the size of approximately convex sets in normed spaces},
journal = {Studia Mathematica},
pages = {213--241},
publisher = {mathdoc},
volume = {140},
number = {3},
year = {2000},
doi = {10.4064/sm-140-3-213-241},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-213-241/}
}
TY - JOUR AU - S. J. Dilworth AU - Ralph Howard AU - James W. Roberts TI - On the size of approximately convex sets in normed spaces JO - Studia Mathematica PY - 2000 SP - 213 EP - 241 VL - 140 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-213-241/ DO - 10.4064/sm-140-3-213-241 LA - en ID - 10_4064_sm_140_3_213_241 ER -
%0 Journal Article %A S. J. Dilworth %A Ralph Howard %A James W. Roberts %T On the size of approximately convex sets in normed spaces %J Studia Mathematica %D 2000 %P 213-241 %V 140 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-213-241/ %R 10.4064/sm-140-3-213-241 %G en %F 10_4064_sm_140_3_213_241
S. J. Dilworth; Ralph Howard; James W. Roberts. On the size of approximately convex sets in normed spaces. Studia Mathematica, Tome 140 (2000) no. 3, pp. 213-241. doi: 10.4064/sm-140-3-213-241
Cité par Sources :