On absolutely representing systems in spaces of infinitely differentiable functions
Studia Mathematica, Tome 139 (2000) no. 2, pp. 175-188
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main part of the paper is devoted to the problem of the existence of absolutely representing systems of exponentials with imaginary exponents in the spaces $C^∞(G)$ and $C^∞(K)$ of infinitely differentiable functions where G is an arbitrary domain in $ℝ^p$, p≥1, while K is a compact set in $ℝ^p$ with non-void interior K̇ such that $\overline K̇= K$. Moreover, absolutely representing systems of exponents in the space H(G) of functions analytic in an arbitrary domain $G ⊆ ℂ^p$ are also investigated.
@article{10_4064_sm_139_2_175_188,
author = {Yu. F. Korobe\u{i}nik},
title = {On absolutely representing systems in spaces of infinitely differentiable functions},
journal = {Studia Mathematica},
pages = {175--188},
publisher = {mathdoc},
volume = {139},
number = {2},
year = {2000},
doi = {10.4064/sm-139-2-175-188},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-2-175-188/}
}
TY - JOUR AU - Yu. F. Korobeĭnik TI - On absolutely representing systems in spaces of infinitely differentiable functions JO - Studia Mathematica PY - 2000 SP - 175 EP - 188 VL - 139 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-2-175-188/ DO - 10.4064/sm-139-2-175-188 LA - en ID - 10_4064_sm_139_2_175_188 ER -
%0 Journal Article %A Yu. F. Korobeĭnik %T On absolutely representing systems in spaces of infinitely differentiable functions %J Studia Mathematica %D 2000 %P 175-188 %V 139 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-2-175-188/ %R 10.4064/sm-139-2-175-188 %G en %F 10_4064_sm_139_2_175_188
Yu. F. Korobeĭnik. On absolutely representing systems in spaces of infinitely differentiable functions. Studia Mathematica, Tome 139 (2000) no. 2, pp. 175-188. doi: 10.4064/sm-139-2-175-188
Cité par Sources :