On absolutely representing systems in spaces of infinitely differentiable functions
Studia Mathematica, Tome 139 (2000) no. 2, pp. 175-188
The main part of the paper is devoted to the problem of the existence of absolutely representing systems of exponentials with imaginary exponents in the spaces $C^∞(G)$ and $C^∞(K)$ of infinitely differentiable functions where G is an arbitrary domain in $ℝ^p$, p≥1, while K is a compact set in $ℝ^p$ with non-void interior K̇ such that $\overline K̇= K$. Moreover, absolutely representing systems of exponents in the space H(G) of functions analytic in an arbitrary domain $G ⊆ ℂ^p$ are also investigated.
@article{10_4064_sm_139_2_175_188,
author = {Yu. F. Korobe\u{i}nik},
title = {On absolutely representing systems in spaces of infinitely differentiable functions},
journal = {Studia Mathematica},
pages = {175--188},
year = {2000},
volume = {139},
number = {2},
doi = {10.4064/sm-139-2-175-188},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-2-175-188/}
}
TY - JOUR AU - Yu. F. Korobeĭnik TI - On absolutely representing systems in spaces of infinitely differentiable functions JO - Studia Mathematica PY - 2000 SP - 175 EP - 188 VL - 139 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-2-175-188/ DO - 10.4064/sm-139-2-175-188 LA - en ID - 10_4064_sm_139_2_175_188 ER -
%0 Journal Article %A Yu. F. Korobeĭnik %T On absolutely representing systems in spaces of infinitely differentiable functions %J Studia Mathematica %D 2000 %P 175-188 %V 139 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-2-175-188/ %R 10.4064/sm-139-2-175-188 %G en %F 10_4064_sm_139_2_175_188
Yu. F. Korobeĭnik. On absolutely representing systems in spaces of infinitely differentiable functions. Studia Mathematica, Tome 139 (2000) no. 2, pp. 175-188. doi: 10.4064/sm-139-2-175-188
Cité par Sources :