On absolutely representing systems in spaces of infinitely differentiable functions
Studia Mathematica, Tome 139 (2000) no. 2, pp. 175-188

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main part of the paper is devoted to the problem of the existence of absolutely representing systems of exponentials with imaginary exponents in the spaces $C^∞(G)$ and $C^∞(K)$ of infinitely differentiable functions where G is an arbitrary domain in $ℝ^p$, p≥1, while K is a compact set in $ℝ^p$ with non-void interior K̇ such that $\overline K̇= K$. Moreover, absolutely representing systems of exponents in the space H(G) of functions analytic in an arbitrary domain $G ⊆ ℂ^p$ are also investigated.
DOI : 10.4064/sm-139-2-175-188

Yu. F. Korobeĭnik 1

1
@article{10_4064_sm_139_2_175_188,
     author = {Yu. F. Korobe\u{i}nik},
     title = {On absolutely representing systems in spaces of infinitely differentiable functions},
     journal = {Studia Mathematica},
     pages = {175--188},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-139-2-175-188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-2-175-188/}
}
TY  - JOUR
AU  - Yu. F. Korobeĭnik
TI  - On absolutely representing systems in spaces of infinitely differentiable functions
JO  - Studia Mathematica
PY  - 2000
SP  - 175
EP  - 188
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-2-175-188/
DO  - 10.4064/sm-139-2-175-188
LA  - en
ID  - 10_4064_sm_139_2_175_188
ER  - 
%0 Journal Article
%A Yu. F. Korobeĭnik
%T On absolutely representing systems in spaces of infinitely differentiable functions
%J Studia Mathematica
%D 2000
%P 175-188
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-2-175-188/
%R 10.4064/sm-139-2-175-188
%G en
%F 10_4064_sm_139_2_175_188
Yu. F. Korobeĭnik. On absolutely representing systems in spaces of infinitely differentiable functions. Studia Mathematica, Tome 139 (2000) no. 2, pp. 175-188. doi: 10.4064/sm-139-2-175-188

Cité par Sources :