Extreme points of the complex binary trilinear ball
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 138 (2000) no. 1, pp. 81-92
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We characterize all the extreme points of the unit ball in the space of trilinear forms on the Hilbert space $ℂ^2$. This answers a question posed by R. Grząślewicz and K. John [7], who solved the corresponding problem for the real Hilbert space $ℝ^2$. As an application we determine the best constant in the inequality between the Hilbert-Schmidt norm and the norm of trilinear forms.
            
            
            
          
        
      
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Fernando Cobos 1 ;  1 ;  1
@article{10_4064_sm_138_1_81_92,
     author = {Fernando Cobos and   and  },
     title = {Extreme points of the complex binary trilinear ball},
     journal = {Studia Mathematica},
     pages = {81--92},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-138-1-81-92},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-1-81-92/}
}
                      
                      
                    TY - JOUR AU - Fernando Cobos AU - AU - TI - Extreme points of the complex binary trilinear ball JO - Studia Mathematica PY - 2000 SP - 81 EP - 92 VL - 138 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-1-81-92/ DO - 10.4064/sm-138-1-81-92 LA - en ID - 10_4064_sm_138_1_81_92 ER -
Fernando Cobos; ; . Extreme points of the complex binary trilinear ball. Studia Mathematica, Tome 138 (2000) no. 1, pp. 81-92. doi: 10.4064/sm-138-1-81-92
Cité par Sources :
