An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces
Studia Mathematica, Tome 137 (1999) no. 2, pp. 101-121
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces $C^∞(K)$, $S(ℝ^N)$, $B(ℝ R^N)$, $D_{L_1}(ℝ^N)$, for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.
@article{10_4064_sm_137_2_101_121,
author = {M. Poppenberg},
title = {An application of the {Nash-Moser} theorem to ordinary differential equations in {Fr\'echet} spaces},
journal = {Studia Mathematica},
pages = {101--121},
year = {1999},
volume = {137},
number = {2},
doi = {10.4064/sm-137-2-101-121},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-101-121/}
}
TY - JOUR AU - M. Poppenberg TI - An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces JO - Studia Mathematica PY - 1999 SP - 101 EP - 121 VL - 137 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-101-121/ DO - 10.4064/sm-137-2-101-121 LA - en ID - 10_4064_sm_137_2_101_121 ER -
%0 Journal Article %A M. Poppenberg %T An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces %J Studia Mathematica %D 1999 %P 101-121 %V 137 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-101-121/ %R 10.4064/sm-137-2-101-121 %G en %F 10_4064_sm_137_2_101_121
M. Poppenberg. An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces. Studia Mathematica, Tome 137 (1999) no. 2, pp. 101-121. doi: 10.4064/sm-137-2-101-121
Cité par Sources :