An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces
Studia Mathematica, Tome 137 (1999) no. 2, pp. 101-121

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces $C^∞(K)$, $S(ℝ^N)$, $B(ℝ R^N)$, $D_{L_1}(ℝ^N)$, for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.
DOI : 10.4064/sm-137-2-101-121

M. Poppenberg 1

1
@article{10_4064_sm_137_2_101_121,
     author = {M. Poppenberg},
     title = {An application of the {Nash-Moser} theorem to ordinary differential equations in {Fr\'echet} spaces},
     journal = {Studia Mathematica},
     pages = {101--121},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-137-2-101-121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-101-121/}
}
TY  - JOUR
AU  - M. Poppenberg
TI  - An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces
JO  - Studia Mathematica
PY  - 1999
SP  - 101
EP  - 121
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-101-121/
DO  - 10.4064/sm-137-2-101-121
LA  - en
ID  - 10_4064_sm_137_2_101_121
ER  - 
%0 Journal Article
%A M. Poppenberg
%T An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces
%J Studia Mathematica
%D 1999
%P 101-121
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-101-121/
%R 10.4064/sm-137-2-101-121
%G en
%F 10_4064_sm_137_2_101_121
M. Poppenberg. An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces. Studia Mathematica, Tome 137 (1999) no. 2, pp. 101-121. doi: 10.4064/sm-137-2-101-121

Cité par Sources :