Interpolation of real method spaces via some ideals of operators
Studia Mathematica, Tome 136 (1999) no. 1, pp. 17-35

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Certain operator ideals are used to study interpolation of operators between spaces generated by the real method. Using orbital equivalence a new reiteration formula is proved for certain real interpolation spaces generated by ordered pairs of Banach lattices of the form $(X,L_∞(w))$. As an application we extend Ovchinnikov's interpolation theorem from the context of classical Lions-Peetre spaces to a larger class of real interpolation spaces. A description of certain abstract J-method spaces is also presented.
DOI : 10.4064/sm-136-1-17-35

Mieczysław Mastyło 1 ; Mario Milman 1

1
@article{10_4064_sm_136_1_17_35,
     author = {Mieczys{\l}aw Masty{\l}o and Mario Milman},
     title = {Interpolation of real method spaces via some ideals of operators},
     journal = {Studia Mathematica},
     pages = {17--35},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-136-1-17-35},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-136-1-17-35/}
}
TY  - JOUR
AU  - Mieczysław Mastyło
AU  - Mario Milman
TI  - Interpolation of real method spaces via some ideals of operators
JO  - Studia Mathematica
PY  - 1999
SP  - 17
EP  - 35
VL  - 136
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-136-1-17-35/
DO  - 10.4064/sm-136-1-17-35
LA  - en
ID  - 10_4064_sm_136_1_17_35
ER  - 
%0 Journal Article
%A Mieczysław Mastyło
%A Mario Milman
%T Interpolation of real method spaces via some ideals of operators
%J Studia Mathematica
%D 1999
%P 17-35
%V 136
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-136-1-17-35/
%R 10.4064/sm-136-1-17-35
%G en
%F 10_4064_sm_136_1_17_35
Mieczysław Mastyło; Mario Milman. Interpolation of real method spaces via some ideals of operators. Studia Mathematica, Tome 136 (1999) no. 1, pp. 17-35. doi: 10.4064/sm-136-1-17-35

Cité par Sources :