Boundedness of Marcinkiewicz functions.
Studia Mathematica, Tome 135 (1999) no. 2, pp. 103-142
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The $L^p$ boundedness(1 p ∞) of Littlewood-Paley's g-function, Lusin's S function, Littlewood-Paley's $g*_λ$-functions, and the Marcinkiewicz function is well known. In a sense, one can regard the Marcinkiewicz function as a variant of Littlewood-Paley's g-function. In this note, we treat counterparts $μ_{S}^{ϱ}$ and $μ_{λ}^{*,ϱ}$ to S and $g*_λ$. The definition of $μ_{S}^{ϱ}(f)$ is as follows: $μ_{S}^{ϱ}(f)(x) = (ʃ_{|y-x| t}| 1/t^{ϱ} ʃ_{|z|≤ t} Ω(z)/(|z|^{n-ϱ}) f(y-z) dz|^2 (dydt)/(t^{n+1}) )^{1/2}$, where Ω(x) is a homogeneous function of degree 0 and Lipschitz continuous of order β (0 β ≤ 1) on the unit sphere $S^{n-1}$, and $ʃ_{S^{n-1}} Ω(x')dσ(x') = 0$. We show that if σ = Reϱ > 0, then $μ_{S}^{ϱ}$ is $L^p$ bounded for max(1,2n/(n+2σ) p ∞, and for 0 ϱ ≤ n/2 and 1 ≤ p ≤ 2n/(n+2ϱ), then $L^p$ boundedness does not hold in general, in contrast to the case of the S function. Similar results hold for $μ_{λ}^{*,ϱ}$. Their boundedness in the Campanato space $ε^{α,p}$ is also considered.
Keywords:
Marcinkiewicz function, Littlewood-Paley function, area function
Affiliations des auteurs :
Minako Sakamoto 1 ;  1
@article{10_4064_sm_135_2_103_142,
author = {Minako Sakamoto and },
title = {Boundedness of {Marcinkiewicz} functions.},
journal = {Studia Mathematica},
pages = {103--142},
publisher = {mathdoc},
volume = {135},
number = {2},
year = {1999},
doi = {10.4064/sm-135-2-103-142},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-103-142/}
}
TY - JOUR AU - Minako Sakamoto AU - TI - Boundedness of Marcinkiewicz functions. JO - Studia Mathematica PY - 1999 SP - 103 EP - 142 VL - 135 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-103-142/ DO - 10.4064/sm-135-2-103-142 LA - en ID - 10_4064_sm_135_2_103_142 ER -
Minako Sakamoto; . Boundedness of Marcinkiewicz functions.. Studia Mathematica, Tome 135 (1999) no. 2, pp. 103-142. doi: 10.4064/sm-135-2-103-142
Cité par Sources :