Boundedness of Marcinkiewicz functions.
Studia Mathematica, Tome 135 (1999) no. 2, pp. 103-142

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The $L^p$ boundedness(1 p ∞) of Littlewood-Paley's g-function, Lusin's S function, Littlewood-Paley's $g*_λ$-functions, and the Marcinkiewicz function is well known. In a sense, one can regard the Marcinkiewicz function as a variant of Littlewood-Paley's g-function. In this note, we treat counterparts $μ_{S}^{ϱ}$ and $μ_{λ}^{*,ϱ}$ to S and $g*_λ$. The definition of $μ_{S}^{ϱ}(f)$ is as follows: $μ_{S}^{ϱ}(f)(x) = (ʃ_{|y-x| t}| 1/t^{ϱ} ʃ_{|z|≤ t} Ω(z)/(|z|^{n-ϱ}) f(y-z) dz|^2 (dydt)/(t^{n+1}) )^{1/2}$, where Ω(x) is a homogeneous function of degree 0 and Lipschitz continuous of order β (0 β ≤ 1) on the unit sphere $S^{n-1}$, and $ʃ_{S^{n-1}} Ω(x')dσ(x') = 0$. We show that if σ = Reϱ > 0, then $μ_{S}^{ϱ}$ is $L^p$ bounded for max(1,2n/(n+2σ) p ∞, and for 0 ϱ ≤ n/2 and 1 ≤ p ≤ 2n/(n+2ϱ), then $L^p$ boundedness does not hold in general, in contrast to the case of the S function. Similar results hold for $μ_{λ}^{*,ϱ}$. Their boundedness in the Campanato space $ε^{α,p}$ is also considered.
DOI : 10.4064/sm-135-2-103-142
Keywords: Marcinkiewicz function, Littlewood-Paley function, area function

Minako Sakamoto 1 ;  1

1
@article{10_4064_sm_135_2_103_142,
     author = {Minako Sakamoto and  },
     title = {Boundedness of {Marcinkiewicz} functions.},
     journal = {Studia Mathematica},
     pages = {103--142},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-135-2-103-142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-103-142/}
}
TY  - JOUR
AU  - Minako Sakamoto
AU  -  
TI  - Boundedness of Marcinkiewicz functions.
JO  - Studia Mathematica
PY  - 1999
SP  - 103
EP  - 142
VL  - 135
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-103-142/
DO  - 10.4064/sm-135-2-103-142
LA  - en
ID  - 10_4064_sm_135_2_103_142
ER  - 
%0 Journal Article
%A Minako Sakamoto
%A  
%T Boundedness of Marcinkiewicz functions.
%J Studia Mathematica
%D 1999
%P 103-142
%V 135
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-103-142/
%R 10.4064/sm-135-2-103-142
%G en
%F 10_4064_sm_135_2_103_142
Minako Sakamoto;  . Boundedness of Marcinkiewicz functions.. Studia Mathematica, Tome 135 (1999) no. 2, pp. 103-142. doi: 10.4064/sm-135-2-103-142

Cité par Sources :