Spectral localization, power boundedness and invariant subspaces under Ritt's type condition
Studia Mathematica, Tome 134 (1999) no. 2, pp. 153-167
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a bounded linear operator T in a Banach space the Ritt resolvent condition $∥R_λ(T)∥ ≤ C/|λ - 1|$ (|λ| > 1) can be extended (changing the constant C) to any sector |arg(λ - 1)| ≤ π - δ, $arccos(C^{-1}) δ π/2$. This implies the power boundedness of the operator T. A key result is that the spectrum σ(T) is contained in a special convex closed domain. A generalized Ritt condition leads to a similar localization result and then to a theorem on invariant subspaces.
@article{10_4064_sm_134_2_153_167,
author = {Yu Lyubich},
title = {Spectral localization, power boundedness and invariant subspaces under {Ritt's} type condition},
journal = {Studia Mathematica},
pages = {153--167},
year = {1999},
volume = {134},
number = {2},
doi = {10.4064/sm-134-2-153-167},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-153-167/}
}
TY - JOUR AU - Yu Lyubich TI - Spectral localization, power boundedness and invariant subspaces under Ritt's type condition JO - Studia Mathematica PY - 1999 SP - 153 EP - 167 VL - 134 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-153-167/ DO - 10.4064/sm-134-2-153-167 LA - en ID - 10_4064_sm_134_2_153_167 ER -
%0 Journal Article %A Yu Lyubich %T Spectral localization, power boundedness and invariant subspaces under Ritt's type condition %J Studia Mathematica %D 1999 %P 153-167 %V 134 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-153-167/ %R 10.4064/sm-134-2-153-167 %G en %F 10_4064_sm_134_2_153_167
Yu Lyubich. Spectral localization, power boundedness and invariant subspaces under Ritt's type condition. Studia Mathematica, Tome 134 (1999) no. 2, pp. 153-167. doi: 10.4064/sm-134-2-153-167
Cité par Sources :