Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
Studia Mathematica, Tome 133 (1999) no. 1, pp. 53-92

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The purpose of the paper is to extend results of the potential theory of the classical Schrödinger operator to the α-stable case. To obtain this we analyze a weak version of the Schrödinger operator based on the fractional Laplacian and we prove the Conditional Gauge Theorem.
DOI : 10.4064/sm-133-1-53-92
Keywords: α-stable Lévy processes, α-stable Feynman-Kac semigroup, weak fractional Laplacian, α-stable Schrödinger operator, potential theory, q-harmonic functions, conditional gauge theorem

Krzysztof Bogdan 1

1
@article{10_4064_sm_133_1_53_92,
     author = {Krzysztof Bogdan},
     title = {Potential theory for the \ensuremath{\alpha}-stable {Schr\"odinger} operator on bounded {Lipschitz} domains},
     journal = {Studia Mathematica},
     pages = {53--92},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-133-1-53-92},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-53-92/}
}
TY  - JOUR
AU  - Krzysztof Bogdan
TI  - Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
JO  - Studia Mathematica
PY  - 1999
SP  - 53
EP  - 92
VL  - 133
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-53-92/
DO  - 10.4064/sm-133-1-53-92
LA  - en
ID  - 10_4064_sm_133_1_53_92
ER  - 
%0 Journal Article
%A Krzysztof Bogdan
%T Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
%J Studia Mathematica
%D 1999
%P 53-92
%V 133
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-53-92/
%R 10.4064/sm-133-1-53-92
%G en
%F 10_4064_sm_133_1_53_92
Krzysztof Bogdan. Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Mathematica, Tome 133 (1999) no. 1, pp. 53-92. doi: 10.4064/sm-133-1-53-92

Cité par Sources :