Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
Studia Mathematica, Tome 133 (1999) no. 1, pp. 53-92
The purpose of the paper is to extend results of the potential theory of the classical Schrödinger operator to the α-stable case. To obtain this we analyze a weak version of the Schrödinger operator based on the fractional Laplacian and we prove the Conditional Gauge Theorem.
Keywords:
α-stable Lévy processes, α-stable Feynman-Kac semigroup, weak fractional Laplacian, α-stable Schrödinger operator, potential theory, q-harmonic functions, conditional gauge theorem
@article{10_4064_sm_133_1_53_92,
author = {Krzysztof Bogdan},
title = {Potential theory for the \ensuremath{\alpha}-stable {Schr\"odinger} operator on bounded {Lipschitz} domains},
journal = {Studia Mathematica},
pages = {53--92},
year = {1999},
volume = {133},
number = {1},
doi = {10.4064/sm-133-1-53-92},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-53-92/}
}
TY - JOUR AU - Krzysztof Bogdan TI - Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains JO - Studia Mathematica PY - 1999 SP - 53 EP - 92 VL - 133 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-53-92/ DO - 10.4064/sm-133-1-53-92 LA - en ID - 10_4064_sm_133_1_53_92 ER -
Krzysztof Bogdan. Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Mathematica, Tome 133 (1999) no. 1, pp. 53-92. doi: 10.4064/sm-133-1-53-92
Cité par Sources :