The higher order Riesz transform for Gaussian measure need not be of weak type (1,1)
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 131 (1998) no. 3, pp. 205-214
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              The purpose of this paper is to prove that the higher order Riesz transform for Gaussian measure associated with the Ornstein-Uhlenbeck differential operator $L:= d^2/dx^2 - 2xd/dx$, x ∈ ℝ, need not be of weak type (1,1). A function in $L^1(dγ)$, where dγ is the Gaussian measure, is given such that the distribution function of the higher order Riesz transform decays more slowly than C/λ.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Fourier analysis, Gaussian measure, Poisson-Hermite integrals, Hermite expansions
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Liliana Forzani 1 ;  1
@article{10_4064_sm_131_3_205_214,
     author = {Liliana Forzani and  },
     title = {The higher order {Riesz} transform for {Gaussian} measure need not be of weak type (1,1)},
     journal = {Studia Mathematica},
     pages = {205--214},
     publisher = {mathdoc},
     volume = {131},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-131-3-205-214},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-205-214/}
}
                      
                      
                    TY - JOUR AU - Liliana Forzani AU - TI - The higher order Riesz transform for Gaussian measure need not be of weak type (1,1) JO - Studia Mathematica PY - 1998 SP - 205 EP - 214 VL - 131 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-205-214/ DO - 10.4064/sm-131-3-205-214 LA - en ID - 10_4064_sm_131_3_205_214 ER -
%0 Journal Article %A Liliana Forzani %A %T The higher order Riesz transform for Gaussian measure need not be of weak type (1,1) %J Studia Mathematica %D 1998 %P 205-214 %V 131 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-205-214/ %R 10.4064/sm-131-3-205-214 %G en %F 10_4064_sm_131_3_205_214
Liliana Forzani; . The higher order Riesz transform for Gaussian measure need not be of weak type (1,1). Studia Mathematica, Tome 131 (1998) no. 3, pp. 205-214. doi: 10.4064/sm-131-3-205-214
Cité par Sources :
