The higher order Riesz transform for Gaussian measure need not be of weak type (1,1)
Studia Mathematica, Tome 131 (1998) no. 3, pp. 205-214

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The purpose of this paper is to prove that the higher order Riesz transform for Gaussian measure associated with the Ornstein-Uhlenbeck differential operator $L:= d^2/dx^2 - 2xd/dx$, x ∈ ℝ, need not be of weak type (1,1). A function in $L^1(dγ)$, where dγ is the Gaussian measure, is given such that the distribution function of the higher order Riesz transform decays more slowly than C/λ.
DOI : 10.4064/sm-131-3-205-214
Keywords: Fourier analysis, Gaussian measure, Poisson-Hermite integrals, Hermite expansions

Liliana Forzani 1 ;  1

1
@article{10_4064_sm_131_3_205_214,
     author = {Liliana Forzani and  },
     title = {The higher order {Riesz} transform for {Gaussian} measure need not be of weak type (1,1)},
     journal = {Studia Mathematica},
     pages = {205--214},
     publisher = {mathdoc},
     volume = {131},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-131-3-205-214},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-205-214/}
}
TY  - JOUR
AU  - Liliana Forzani
AU  -  
TI  - The higher order Riesz transform for Gaussian measure need not be of weak type (1,1)
JO  - Studia Mathematica
PY  - 1998
SP  - 205
EP  - 214
VL  - 131
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-205-214/
DO  - 10.4064/sm-131-3-205-214
LA  - en
ID  - 10_4064_sm_131_3_205_214
ER  - 
%0 Journal Article
%A Liliana Forzani
%A  
%T The higher order Riesz transform for Gaussian measure need not be of weak type (1,1)
%J Studia Mathematica
%D 1998
%P 205-214
%V 131
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-205-214/
%R 10.4064/sm-131-3-205-214
%G en
%F 10_4064_sm_131_3_205_214
Liliana Forzani;  . The higher order Riesz transform for Gaussian measure need not be of weak type (1,1). Studia Mathematica, Tome 131 (1998) no. 3, pp. 205-214. doi: 10.4064/sm-131-3-205-214

Cité par Sources :