$B^q$ for parabolic measures
Studia Mathematica, Tome 131 (1998) no. 2, pp. 115-135

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If Ω is a Lip(1,1/2) domain, μ a doubling measure on $∂_{p}Ω, ∂/∂t - L_{i}$, i = 0,1, are two parabolic-type operators with coefficients bounded and measurable, 2 ≤ q ∞, then the associated measures $ω_{0}$, $ω_{1}$ have the property that $ω_{0} ∈ B^{q}(μ)$ implies $ω_{1}$ is absolutely continuous with respect to $ω_{0}$ whenever a certain Carleson-type condition holds on the difference function of the coefficients of $L_{1}$ and $L_{0}$. Also $ω_{0} ∈ B^{q}(μ) $ implies $ω_{1} ∈ B^{q}(μ)$ whenever both measures are center-doubling measures. This is B. Dahlberg's result for elliptic measures extended to parabolic-type measures on time-varying domains. The method of proof is that of Fefferman, Kenig and Pipher.
DOI : 10.4064/sm-131-2-115-135
Keywords: parabolic-type measures, Lip (1, 1/2) domain, good-λ inequalities

Caroline Sweezy 1

1
@article{10_4064_sm_131_2_115_135,
     author = {Caroline Sweezy},
     title = {$B^q$ for parabolic measures},
     journal = {Studia Mathematica},
     pages = {115--135},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-131-2-115-135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-115-135/}
}
TY  - JOUR
AU  - Caroline Sweezy
TI  - $B^q$ for parabolic measures
JO  - Studia Mathematica
PY  - 1998
SP  - 115
EP  - 135
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-115-135/
DO  - 10.4064/sm-131-2-115-135
LA  - en
ID  - 10_4064_sm_131_2_115_135
ER  - 
%0 Journal Article
%A Caroline Sweezy
%T $B^q$ for parabolic measures
%J Studia Mathematica
%D 1998
%P 115-135
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-115-135/
%R 10.4064/sm-131-2-115-135
%G en
%F 10_4064_sm_131_2_115_135
Caroline Sweezy. $B^q$ for parabolic measures. Studia Mathematica, Tome 131 (1998) no. 2, pp. 115-135. doi: 10.4064/sm-131-2-115-135

Cité par Sources :