A generalized Kahane-Khinchin inequality
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 130 (1998) no. 2, pp. 101-107
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              The inequality $ʃ log |∑ a_n e^{2πiφ_n}|dφ_1…dφ_n ≥ C log(∑|a_n|^2)^{1/2}$ with an absolute constant C, and similar ones, are extended to the case of $a_n$ belonging to an arbitrary normed space X and an arbitrary compact group of unitary operators on X instead of the operators of multiplication by $e^{2πiφ}$.
            
            
            
          
        
      @article{10_4064_sm_130_2_101_107,
     author = {S. Yu. Favorov},
     title = {A generalized {Kahane-Khinchin} inequality},
     journal = {Studia Mathematica},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-130-2-101-107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-2-101-107/}
}
                      
                      
                    S. Yu. Favorov. A generalized Kahane-Khinchin inequality. Studia Mathematica, Tome 130 (1998) no. 2, pp. 101-107. doi: 10.4064/sm-130-2-101-107
Cité par Sources :
