A generalized Kahane-Khinchin inequality
Studia Mathematica, Tome 130 (1998) no. 2, pp. 101-107

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The inequality $ʃ log |∑ a_n e^{2πiφ_n}|dφ_1…dφ_n ≥ C log(∑|a_n|^2)^{1/2}$ with an absolute constant C, and similar ones, are extended to the case of $a_n$ belonging to an arbitrary normed space X and an arbitrary compact group of unitary operators on X instead of the operators of multiplication by $e^{2πiφ}$.
DOI : 10.4064/sm-130-2-101-107

S. Yu. Favorov 1

1
@article{10_4064_sm_130_2_101_107,
     author = {S. Yu. Favorov},
     title = {A generalized {Kahane-Khinchin} inequality},
     journal = {Studia Mathematica},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-130-2-101-107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-2-101-107/}
}
TY  - JOUR
AU  - S. Yu. Favorov
TI  - A generalized Kahane-Khinchin inequality
JO  - Studia Mathematica
PY  - 1998
SP  - 101
EP  - 107
VL  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-2-101-107/
DO  - 10.4064/sm-130-2-101-107
LA  - en
ID  - 10_4064_sm_130_2_101_107
ER  - 
%0 Journal Article
%A S. Yu. Favorov
%T A generalized Kahane-Khinchin inequality
%J Studia Mathematica
%D 1998
%P 101-107
%V 130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-2-101-107/
%R 10.4064/sm-130-2-101-107
%G en
%F 10_4064_sm_130_2_101_107
S. Yu. Favorov. A generalized Kahane-Khinchin inequality. Studia Mathematica, Tome 130 (1998) no. 2, pp. 101-107. doi: 10.4064/sm-130-2-101-107

Cité par Sources :